Learn More
Oxidative stress plays a critical role in the pathogenesis of atherosclerosis including the formation of lipid laden macrophages and the development of inflammation. However, oxidative stress-induced molecular signaling that regulates the development of vascular calcification has not been investigated in depth. Osteogenic differentiation of vascular smooth(More)
RATIONALE Vascular calcification is a hallmark of atherosclerosis, a major cause of morbidity and mortality in the United States. We have previously reported that the osteogenic transcription factor Runx2 is an essential and sufficient regulator of calcification of vascular smooth muscle cells (VSMC) in vitro. OBJECTIVE To determine the contribution of(More)
OBJECTIVE Clinical and experimental studies demonstrate the important roles of vascular smooth muscle cells (VSMC) in the pathogenesis of atherosclerosis. We have previously determined that the osteogenic transcription factor Runx2 is essential for VSMC calcification. The present study characterized Runx2-regulated signals and their potential roles in(More)
OBJECTIVE Vascular calcification is a characteristic feature of atherosclerosis, diabetes mellitus, and end-stage renal disease. We have demonstrated that activation of protein kinase B (AKT) upregulates runt-related transcription factor 2 (Runx2), a key osteogenic transcription factor that is crucial for calcification of vascular smooth muscle cells(More)
OBJECTIVE Proliferation of vascular smooth muscle cells (VSMCs) contributes to restenosis after coronary intervention. We have shown previously that increased expression of plasminogen activator inhibitor type 1 (PAI-1) limits VSMC apoptosis. Because apoptosis and proliferation appear to be linked, we sought to determine whether increased PAI-1 would affect(More)
Obesity is a risk factor for breast cancer and is associated with increased plasma concentrations of free fatty acids (FFAs). We and others have demonstrated that FFA induces plasminogen activator inhibitor-1 (PAI-1) expression in a variety of cells. Emerging evidence supports elevation of PAI-1 as a prognostic marker for breast cancer. Therefore, we(More)
Cholangiocarcinoma is a highly malignant neoplasm with no effective treatment. Conditionally replicative adenoviruses (CRAds) represent a promising new modality for the treatment of cancer in general. A key contribution in this regard was the introduction of tumor-selective viral replication for amplification of the initial inoculum in the neoplastic cell(More)
PURPOSE Cholangiocarcinoma is a fatal tumor with limited therapeutic options. We have reported that calmodulin antagonists tamoxifen and trifluoperazine induced apoptosis in cholangiocarcinoma cells. Here, we determined the effects of tamoxifen on tumorigenesis and the molecular mechanisms of tamoxifen-induced apoptosis. EXPERIMENTAL DESIGN Nude mice(More)
PURPOSE Activating extrinsic apoptotic pathways targeting death receptors (DR) using agonistic antibodies or TNF-related apoptosis-inducing ligand (TRAIL) is promising for cancer therapy. However, most pancreatic cancers are resistant to TRAIL therapy. The present studies aimed to identify combination therapies that enhance the efficacy of TRAIL therapy and(More)
Pancreatic cancer remains a devastating malignancy with a poor prognosis and is largely resistant to current therapies. To understand the resistance of pancreatic tumors to Fas death receptor-induced apoptosis, we investigated the molecular mechanisms of Fas-activated survival signaling in pancreatic cancer cells. We found that knockdown of the(More)