Ya-xian Wang

Learn More
NMDA (N-methyl-D-aspartate) receptors (NMDARs) are targeted to dendrites and anchored at the post-synaptic density (PSD) through interactions with PDZ proteins. However, little is known about how these receptors are sorted from the endoplasmic reticulum and Golgi apparatus to the synapse. Here, we find that synapse-associated protein 102 (SAP102) interacts(More)
In glutamatergic synapses, glutamate receptors (GluRs) associate with many other proteins involved in scaffolding and signal transduction. The ontogeny of these postsynaptic density (PSD) proteins involves changes in their composition during development, paralleling changes in GluR type and function. In the CA1 region of the hippocampus, at postnatal day 2(More)
Glutamate receptors are internalized from the cell membrane via clathrin-coated pits. However, little is known about where this occurs - whether at or near the synapse or at some distance from it. In this study we used immunogold localization in the rat brain (mainly hippocampus) to show that clathrin-coated pits are found both at the edge of the synaptic(More)
The number and type of receptors present at the postsynaptic membrane determine the response to the neurotransmitter released from the presynaptic terminal. Because most neurons receive multiple and distinct synaptic inputs and contain several different subtypes of receptors stimulated by the same neurotransmitter, the assembly and trafficking of receptors(More)
The NMDA receptor is an important component of excitatory synapses in the CNS. In addition to its synaptic localization, the NMDA receptor is also present at extrasynaptic sites where it may have functions distinct from those at the synapse. Little is known about how the number, composition, and localization of extrasynaptic receptors are regulated. We(More)
We have identified a novel family of synaptic adhesion-like molecules (SALMs). The family members, SALM1-SALM4, have a single transmembrane (TM) domain and contain extracellular leucine-rich repeats, an Ig C2 type domain, a fibronectin type III domain, and an intracellular postsynaptic density-95 (PSD-95)/Discs large/zona occludens-1 (PDZ) binding domain,(More)
N-methyl-D-aspartate (NMDA) receptors mediate long-term changes in excitatory synapses in response to glutamate release. In the cerebellar granular layer, most glutamatergic synapses are formed between mossy terminals and granule cell dendrites, which together with some other components, make up complex glomerular structures. Glomeruli contain numerous(More)
NMDA receptors (NMDARs) are critical to the development of the nervous system, although their roles at axonal growth cones are unclear. We examined NMDAR localization and function at axonal growth cones of young hippocampal neurons. Our immunocytochemical data showed that native and transfected NMDAR subunits are expressed in axons and growth cones of young(More)
Synaptic adhesion-like molecules (SALMs) are a newly discovered family of adhesion molecules that play roles in synapse formation and neurite outgrowth. The SALM family is comprised of five homologous molecules that are expressed largely in the central nervous system. SALMs 1-3 contain PDZ-binding domains, whereas SALMs 4 and 5 do not. We are interested in(More)
Clathrin assembly proteins AP180 and CALM regulate the assembly of clathrin-coated vesicles (CCVs), which mediate diverse intracellular trafficking processes, including synaptic vesicle (SV) recycling at the synapse. Although studies using several invertebrate model systems have indicated a role for AP180 in SV recycling, less is known about AP180’s or(More)