Learn More
Web search queries are often ambiguous or faceted, and the task of identifying the major underlying senses and facets of queries has received much attention in recent years. We refer to this task as query subtopic mining. In this paper, we propose to use surrounding text of query terms in top retrieved documents to mine subtopics and rank them. We first(More)
Emotional illiteracy exists in current e-learning environment, which will decay learning enthusiasm and productivity, and now gets more attentions in recent researches. Inspired by affective computing and active listening strategy, in this paper, a research and application framework of recognizing emotion based on textual interaction is presented first.(More)
Most queries in web search are ambiguous and multifaceted. Identifying the major senses and facets of queries from search log data, referred to as query subtopic mining in this paper, is a very important issue in web search. Through search log analysis, we show that there are two interesting phenomena of user behavior that can be leveraged to identify query(More)
Author disambiguation in digital libraries becomes increasingly difficult as the number of publications and consequently the number of ambiguous author names keep growing. The fully automatic author disambiguation approach could not give satisfactory results due to the lack of signals in many cases. Furthermore, human judgment on the basis of automatic(More)
It has long been recognized that search queries are often broad and ambiguous. Even when submitting the same query, different users may have different search intents. Moreover, the intents are dynamically evolving. Some intents are constantly popular with users, others are more bursty. We propose a method for mining dynamic query intents from search query(More)
Preorder relation between Knowledge Units (KU) is the precondition for navigation learning. Although possible solutions, existing link mining methods lack the ability of mining preorder relation between knowledge units which are linearly arranged in text. Through the analysis of sample data, we discovered and studied two characteristics of knowledge units:(More)
When a digital library user searches for publications by an author name, she often sees a mixture of publications by different authors who have the same name. With the growth of digital libraries and involvement of more authors, this author ambiguity problem is becoming critical. Author disambiguation (AD) often tries to solve this problem by leveraging(More)
Identifying learning-dependency among the knowledge units (KU) is a preliminary requirement of navigation learning. Methods based on link mining lack the ability of discovering such dependencies among knowledge units that are arranged in a linear way in the text. In this paper, we propose a method of mining the learning-dependencies among the KU from text(More)
In the community of Linked Data, anyone can publish their data as Linked Data on the web because of the openness of the Semantic Web. As such, RDF (Resource Description Framework) triples described the same real-world entity can be obtained from multiple sources; it inevitably results in conflicting objects for a certain predicate of a real-world entity.(More)