Learn More
This paper considers the design of agent strategies for deciding whether to help other members of a group with whom an agent is engaged in a collaborative activity. Three characteristics of collaborative planning must be addressed by these decision-making strategies: agents may have only partial information about their partners’ plans for sub-tasks of the(More)
This paper presents a machine-learning approach to modeling human behavior in one-shot games. It provides a framework for representing and reasoning about the social factors that affect people’s play. The model predicts how a human player is likely to react to different actions of another player, and these predictions are used to determine the best possible(More)
Computer agents are increasingly deployed in settings in which they make decisions with people, such as electronic commerce, collaborative interfaces, and cognitive assistants. However, the scientific evaluation of computational strategies for human-computer decision-making is a costly process, involving time, effort and personnel. This paper investigates(More)
Online labor markets such as Amazon Mechanical Turk (MTurk) offer an unprecedented opportunity to run economic game experiments quickly and inexpensively. Using Mturk, we recruited 756 subjects and examined their behavior in four canonical economic games, with two payoff conditions each: a stakes condition, in which subjects' earnings were based on the(More)
Computer systems increasingly carry out tasks in mixed networks, that is in group settings in which they interact both with other computer systems and with people. Participants in these heterogeneous human-computer groups vary in their capabilities, goals, and strategies; they may cooperate, collaborate, or compete. The presence of people in mixed networks(More)
Many negotiations in the real world are characterized by incomplete information, and participants’ success depends on their ability to reveal information in a way that facilitates agreements without compromising their individual gain. This paper presents an agent-design that is able to negotiate proficiently with people in settings in which agents can(More)
Despite the abundance of strategies in the multi-agent systems literature on repeated negotiation under incomplete information, there is no single negotiation strategy that is optimal for all possible domains. Thus, agent designers face an “algorithm selection” problem—which negotiation strategy to choose when facing a new domain and unknown opponent. Our(More)