Ya-Fu Peng

Learn More
An adaptive cerebellar-model-articulation-controller (CMAC)-based supervisory control system is developed for uncertain nonlinear systems. This adaptive CMAC-based supervisory control system consists of an adaptive CMAC and a supervisory controller. In the adaptive CMAC, a CMAC is used to mimic an ideal control law and a compensated controller is designed(More)
—In this study, a robust cerebellar model articulation controller (RCMAC) is designed for unknown nonlinear systems. The RCMAC is comprised of a cerebellar model articulation controller (CMAC) and a robust controller. The CMAC is utilized to approximate an ideal controller, and the weights of the CMAC are on-line tuned by the derived adaptive law based on(More)