Learn More
Internalization of postsynaptic AMPA receptors depresses excitatory transmission, but the underlying dynamics and mechanisms of this process are unclear. Using immunofluorescence and surface biotinylation, we characterized and quantified basal and regulated AMPA receptor endocytosis in cultured hippocampal neurons, in response to synaptic activity, AMPA and(More)
Modification of synaptic strength in the mammalian central nervous system (CNS) occurs at both pre- and postsynaptic sites. However, because postsynaptic receptors are likely to be saturated by released transmitter, an increase in the number of active postsynaptic receptors may be a more efficient way of strengthening synaptic efficacy. But there has been(More)
GABA(A) (gamma-aminobutyric-acid A) and dopamine D1 and D5 receptors represent two structurally and functionally divergent families of neurotransmitter receptors. The former comprises a class of multi-subunit ligand-gated channels mediating fast interneuronal synaptic transmission, whereas the latter belongs to the seven-transmembrane-domain(More)
Differential innervation of segregated dendritic domains in the chick nucleus laminaris (NL), composed of third-order auditory neurons, provides a unique model to study synaptic regulation of dendritic structure. Altering the synaptic input to one dendritic domain affects the structure and length of the manipulated dendrites while leaving the other set of(More)
Modification of ligand-gated receptor function at the postsynaptic domain is one of the most important mechanisms by which the efficacy of synaptic transmission in the nervous system is regulated. Traditionally, these types of modifications have been thought to be achieved mainly by altering the channel-gating properties or conductance of the receptors.(More)
Modification of the transport velocity of both the native neuronal and cloned presynaptic dopamine transporter (DAT) has been reported following activation/inhibition of second messenger system pathways. In order to identify the mechanism by which the functional activity of human DAT (hDAT) is regulated, we assessed the [3H]dopamine uptake kinetics, [3H](More)
Regulation of ion channel function by intracellular processes is fundamental for controlling synaptic signaling and integration in the nervous system. Currents mediated by N-methyl-D-aspartate (NMDA) receptors decline during whole-cell recordings and this may be prevented by ATP. We show here that phosphorylation is necessary to maintain NMDA currents and(More)
Protein tyrosine phosphorylation is a key event in diverse intracellular signaling pathways and has been implicated in modification of neuronal functioning. We investigated the role of tyrosine phosphorylation in regulating type A GABA (GABAA) receptors in cultured CNS neurons. Extracellular application of genistein (50 microM), a membrane-permeable(More)
Several in vitro studies have demonstrated that genetic polymorphisms result in functionally significant changes in cytochrome p4501A1 (either CYP1A1 MspI or exon 7) but the few epidemiologic studies of these polymorphisms in oesophageal squamous-cell carcinoma have been inconclusive. These inconclusive results motivated us to further examine the(More)