Learn More
Internalization of postsynaptic AMPA receptors depresses excitatory transmission, but the underlying dynamics and mechanisms of this process are unclear. Using immunofluorescence and surface biotinylation, we characterized and quantified basal and regulated AMPA receptor endocytosis in cultured hippocampal neurons, in response to synaptic activity, AMPA and(More)
Modification of synaptic strength in the mammalian central nervous system (CNS) occurs at both pre- and postsynaptic sites. However, because postsynaptic receptors are likely to be saturated by released transmitter, an increase in the number of active postsynaptic receptors may be a more efficient way of strengthening synaptic efficacy. But there has been(More)
GABA(A) (gamma-aminobutyric-acid A) and dopamine D1 and D5 receptors represent two structurally and functionally divergent families of neurotransmitter receptors. The former comprises a class of multi-subunit ligand-gated channels mediating fast interneuronal synaptic transmission, whereas the latter belongs to the seven-transmembrane-domain(More)
Modification of ligand-gated receptor function at the postsynaptic domain is one of the most important mechanisms by which the efficacy of synaptic transmission in the nervous system is regulated. Traditionally, these types of modifications have been thought to be achieved mainly by altering the channel-gating properties or conductance of the receptors.(More)
Protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPs) are key enzymes in signal-transduction pathways for a wide range of cellular processes. PTKs and PTPs are highly expressed in the central nervous system, which is consistent with the importance of tyrosine phosphorylation in neuronal function. Protein phosphorylation is known to be(More)
Modification of the transport velocity of both the native neuronal and cloned presynaptic dopamine transporter (DAT) has been reported following activation/inhibition of second messenger system pathways. In order to identify the mechanism by which the functional activity of human DAT (hDAT) is regulated, we assessed the [3H]dopamine uptake kinetics, [3H](More)
Regulation of ion channel function by intracellular processes is fundamental for controlling synaptic signaling and integration in the nervous system. Currents mediated by N-methyl-D-aspartate (NMDA) receptors decline during whole-cell recordings and this may be prevented by ATP. We show here that phosphorylation is necessary to maintain NMDA currents and(More)
Protein tyrosine phosphorylation is a key event in diverse intracellular signaling pathways and has been implicated in modification of neuronal functioning. We investigated the role of tyrosine phosphorylation in regulating type A GABA (GABAA) receptors in cultured CNS neurons. Extracellular application of genistein (50 microM), a membrane-permeable(More)
The factors responsible for ALS-parkinsonism dementia complex (ALS-PDC), the unique neurological disorder of Guam, remain unresolved, but identification of causal factors could lead to clues for related neurodegenerative disorders elsewhere. Earlier studies focused on the consumption and toxicity of the seed of Cycas circinalis, a traditional staple of the(More)