Y. Shapiro

Learn More
Lithium (Li) reduces brain inositol levels. Berridge has suggested that this effect is related to Li's mechanism of action. It had previously been shown that pilocarpine causes a limbic seizure syndrome in lithium treated rats, and that these lithium-pilocarpine seizures are reversible by intracerebroventricular inositol administration to rats. We now show(More)
Lithium reduces brain inositol levels by inhibiting inositol monophosphatase. In a previous study it was found that administration of pilocarpine to Li-treated rats causes limbic seizure behavior which can be reversed by i.c.v. myo-inositol but not chiro-inositol, suggesting that this behavior is related to inositol depletion in the PI cycle. Hyponatremia(More)
A relatively small decrease in intraocular pressure secondary to submaximal work can be demonstrated when factors other than the work load itself are eliminated--diurnal variation, body position, and the effect of repeated examinations. A feedback mechanism that causes a return of IOP towards its normal value after work-induced decreases is postulated.
Tyrosine-hydroxylase immunohistochemistry demonstrated that a single injection of 120 mg/kg 6-hydroxydopamine (6-OHDA) reversibly disconnected bullfrog sympathetic ganglia from their peripheral targets. This was correlated with a decrease in sympathetic outflow to the eyes and a reversible decrease in pupil diameter. 6-OHDA did not damage the cell bodies of(More)
Enhanced internal mobility in proteins is typically functional. Domain motion in enzymes, necessarily related to catalysis, is a prototype in this context. Experimental (15)N spin relaxation data from E. coli adenylate kinase report qualitatively on nanosecond motion experienced by the domains AMPbd and LID. Previous quantitative analysis based on the(More)
15N–H relaxation parameters from ribonuclease HI (RNase H), acquired in previous work at magnetic fields of 14.1 and 18.8 T, and at 300 K, are analyzed with the mode-coupling slowly relaxing local structure (SRLS) approach. In accordance with standard theoretical treatments of restricted motions, SRLS approaches N-H bond dynamics from a tensorial(More)
We applied over a decade ago the two-body coupled-rotator slowly relaxing local structure (SRLS) approach to NMR relaxation in proteins. One rotator is the globally moving protein and the other rotator is the locally moving probe (spin-bearing moiety, typically the (15)N-(1)H bond). So far we applied SRLS to (15)N-H relaxation from seven different proteins(More)
We developed in recent years the two-body (protein and probe) coupled-rotator slowly relaxing local structure (SRLS) approach for elucidating protein dynamics from NMR spin relaxation. So far we used as descriptors the set of physical parameters that enter the SRLS model. They include the global (protein-related) diffusion tensor, D1, the local(More)
15N-H relaxation parameters from the first (GB1) and third (GB3) immunoglobulin-binding domains of streptococcal protein G were analyzed previously with the traditional model-free (MF) method. These proteins comprise an α-helix and a four-stranded β-sheet. An extensive study of GB1 (GB3) used combined three-field (five-field) data acquired in the 278-323 K(More)