Learn More
Heterotrimeric eukaryotic/archaeal translation initiation factor 2 (e/aIF2) binds initiator methionyl-tRNA and plays a key role in the selection of the start codon on messenger RNA. tRNA binding was extensively studied in the archaeal system. The γ subunit is able to bind tRNA, but the α subunit is required to reach high affinity whereas the β subunit has(More)
Glutaminyl-transfer RNA (Gln-tRNA(Gln)) in archaea is synthesized in a pretranslational amidation of misacylated Glu-tRNA(Gln) by the heterodimeric Glu-tRNA(Gln) amidotransferase GatDE. Here we report the crystal structure of the Methanothermobacter thermautotrophicus GatDE complexed to tRNA(Gln) at 3.15 angstroms resolution. Biochemical analysis of GatDE(More)
In all organisms, translational initiation takes place on the small ribosomal subunit and two classes of methionine tRNA are present. The initiator is used exclusively for initiation of protein synthesis while the elongator is used for inserting methionine internally in the nascent polypeptide chain. The crystal structure of Escherichia coli initiator(More)
Eukaryotic and archaeal translation initiation processes involve a heterotrimeric GTPase e/aIF2 crucial for accuracy of start codon selection. In eukaryotes, the GTPase activity of eIF2 is assisted by a GTPase-activating protein (GAP), eIF5. In archaea, orthologs of eIF5 are not found and aIF2 GTPase activity is thought to be non-assisted. However, no in(More)
Eukaryotic and archaeal translation initiation complexes have a common structural core comprising e/aIF1, e/aIF1A, the ternary complex (TC, e/aIF2-GTP-Met-tRNAi(Met)) and mRNA bound to the small ribosomal subunit. e/aIF2 plays a crucial role in this process but how this factor controls start codon selection remains unclear. Here, we present cryo-EM(More)
The conformations of MgATP and AMP bound to a monomeric tryptic fragment of methionyl tRNA synthetase have been investigated by two-dimensional proton transferred nuclear Overhauser effect spectroscopy (TRNOESY). The sample protocol was chosen to minimize contributions from adventitious binding of the nucleotides to the observed NOE. The experiments were(More)
The metS gene encoding homodimeric methionyl-tRNA synthetase from Bacillus stearothermophilus has been cloned and a 2880 base pair sequence solved. Comparison of the deduced enzyme protomer sequence (Mr 74,355) with that of the E. coli methionyl-tRNA synthetase protomer (Mr 76,124) revealed a relatively low level (32%) of identities, although both enzymes(More)
  • 1