Learn More
Specific transport systems for penicillins have been recognized, but their in vivo role in the context of other transporters remains unclear. We produced a serum against amoxicillin (anti-AMPC) conjugated to albumin with glutaraldehyde. The antiserum was specific for AMPC and ampicillin (ABPC) but cross-reacted weakly with cephalexin. This enabled us to(More)
Antibodies with modest neutralizing activity and narrow breadth are commonly elicited in HIV-1. Here, we evaluated the complementary and synergistic activities of a set of monoclonal antibodies (MAb) isolated from a single patient, directed to V3, CD4 binding site (CD4bs), and CD4 induced (CD4i) epitopes. Despite low somatic hypermutation percentages in the(More)
HIV-1 typically develops resistance to any single antiretroviral agent. Combined anti-retroviral therapy to reduce drug-resistance development is necessary to control HIV-1 infection. Here, to assess the utility of a combination of antibody and fusion inhibitor treatments, we investigated the potency of monoclonal antibodies at neutralizing HIV-1 variants(More)
The V3 loop in the envelope (Env) of HIV-1 is one of the major targets of neutralizing antibodies. However, this antigen is hidden inside the Env trimer in most isolates and is fully exposed only during CD4-gp120 interaction. Thus, primary HIV-1 isolates are relatively resistant to anti-V3 antibodies because IgG is too large to access the V3 loop. To(More)
We analyze Coordinated Multi-Point (CoMP) transmission and reception over heterogeneous wireless networks (HetNets). Our focus is on the design of a practical algorithm for joint resource allocation (joint scheduling) in each HetNet cluster. We present one such algorithm together with its detailed analysis and evaluation under two different approaches for(More)
  • 1