Learn More
This paper introduces GisedTrend, a plugin of the QGIS geographical information system that implements the Grain Sized Trend Analysis (GSTA) method. It is advantageous to incorporate the GSTA method in a GIS since it can directly access: (i) environmental information such as bathymetry, coastline, etc., (ii) spatial analysis tools available in such working(More)
Sampling the sea bottom surface remains difficult because of the surface hydraulic shock due to water flowing through the gear (i.e., the bow wave effect) and the loss of epifauna organisms due to the gear's closing mechanism. Slow-moving mobile epifauna, such as the ophiuroid Ophiothrix fragilis, form high-density patches in the English Channel, not only(More)
In a novel finding for a beach environment, Poizot et al. (2013) identified an FB+ trend (sediments becoming finer, better sorted and more positively skewed upshore) on a well-developed swash bar on the upper foreshore of the Camposoto beach of Cádiz in SW Spain. In their Discussion of that paper, Muñoz-Perez et al. (2014) provide some supporting arguments(More)
To characterize a sedimentary environment, it is risky to take a single sample when the spatial variability is unknown. A reference station has to reflect the natural variations in order to allow the creation of long time series. However, it can remain unclear whether the temporal changes are real or due to a spatial variation. We highlight here the(More)
Dredged sediments have different physical and chemical characteristics compared with the sediments in place, which generates multiple effects on the environment. In this study, we show that the sampling strategy used to monitor the effects of dredge spoil deposition on the surrounding environment can lead to different interpretations. It appears that(More)
  • 1