Learn More
Respiratory motoneuron response to hypoxia is reflex in nature and carotid body sensory receptor constitutes the afferent limb of this reflex. Recent studies showed that repetitive exposures to hypoxia evokes long term facilitation of sensory nerve discharge (sLTF) of the carotid body in rodents exposed to chronic intermittent hypoxia (CIH). Although(More)
To determine whether there are anatomical correlates for intraterminal Ca2+ stores to regulate exocytosis of dense-cored vesicles (DCVs) and whether these stores can modulate exocytosis of synaptic vesicles, we studied the spatial distributions of DCVs, smooth endoplasmic reticulum (SER), and mitochondria in 19 serially reconstructed nerve terminals in(More)
To study the Ca2+ dependency of luteinizing hormone-releasing hormone (LHRH) release in the bullfrog sympathetic ganglia, a method was developed to fill the preganglionic nerve terminal boutons with membrane-impermeant fura-2. We found that as stimulation frequency increased from 0.5 to 40 Hz, the peak [Ca2+]i ([Ca2+]p) and the rate of rise in [Ca2+]i(More)
The functional role of GABAA receptors in inhibition of synaptic transmission between muscle spindle afferents and spinal motoneurons was studied in the isolated spinal cord of bullfrogs. Extracellular recording from the ventral root showed that activation of GABAA receptors by muscimol (primarily a GABAA receptor agonist) at 50 microM produced a 38%(More)
Whether Ca2+ released from stores within the presynaptic nerve terminals also contributes to the Ca2+ elevation evoked by action potentials was tested in intact bullfrog sympathetic ganglia. Intraterminal Ca2+ transients (Delta[Ca2+]i) were evoked by electrical shocks to the presynaptic nerves at 20 Hz and were monitored by fura-2 fluorimetry. Ca2+ released(More)
Effects of different patterns of presynaptic stimulation upon release of leuteinizing hormone releasing hormone (LHRH) were studied by monitoring LHRH-induced slow currents from individual postsynaptic neurons in bullfrog sympathetic ganglia. LHRH-mediated synaptic currents in ganglionic B and C neurons were recorded by a single-electrode voltage-clamp(More)
The rate and the total amount of Ca2+ elevation in the presynaptic terminals of bullfrog sympathetic ganglia depend on the firing frequency of the terminals. Carbonyl cyanide m-chlorophenylhydrazone (CCCP), a mitochondrial uncoupler, was used for testing whether mitochondrial Ca2+ uptake is one of the mechanisms that underlie this frequency dependence.(More)
Previous studies have shown that glomus cells of the carotid body express 5-hydroxytryptamine (5-HT). The aim of this study was to elucidate the role of 5-HT on the hypoxic sensory response (HSR) of the carotid body. Sensory activity was recorded from multi-fiber (n=16) and single-fiber (n=8) preparations of ex vivo carotid bodies harvested from(More)
Amphibia, like most vertebrate species, have two forms of GnRH, namely [Arg8]GnRH (mammalian GnRH) and [His5,Trp7,Tyr8] GnRH (chicken GnRH II). The differential distribution of the two peptides in the amphibian brain suggests that they may play different roles. Mammalian GnRH, which is found predominantly in the hypothalamus, is most likely the prime(More)
In bullfrog sympathetic ganglia, the ryanodine-sensitive Ca2+ store and mitochondria modulate [Ca2+] within nerve terminals. We used caffeine (10 mM) and carbonyl cyanide m-chlorophenylhydrazone (10 microM) to assess how these Ca2+ stores affect release of a neuropeptide, luteinizing hormone-releasing hormone, from these nerve terminals. Release of(More)