Learn More
Physiological and pharmacological properties of possible subtypes of the native glycine receptor were investigated in retinal neurons using whole-cell voltage-clamp techniques. Two discrete inhibitory glycine responses were identified in ganglion cells. The responses could be distinguished pharmacologically: one was sensitive to strychnine and the other to(More)
Specific receptors for lutropin (luteinizing hormone; LH) and follitropin (follicle-stimulating hormone; FSH) mediate the actions of human chorionic gonadotropin (hCG) and FSH5 on the gonads. Here we report that short independent sequences of the beta-subunit enable hCG to distinguish between the receptors for FSH and LH. Residues between the 11th and 12th(More)
IL-17 is one of the most potent and most actively investigated proinflammatory cytokines. In this study, we examined the effect of IL-17 on mesenchymal stem cells (MSCs) under the influence of inflammatory cytokines. Ironically, IL-17 dramatically enhanced the immunosuppressive effect of MSCs induced by IFNγ and TNFα, revealing a novel role of IL-17 in(More)
The goal of this research is to identify and characterize the protein machinery that functions in the intracellular translocation and assembly of peroxisomal proteins in Saccharomyces cerevisiae. Several genes encoding proteins that are essential for this process have been identified previously by Kunau and collaborators, but the mutant collection was(More)
Mitochondrial fission has been reported to be involved in oxidative stress, apoptosis and many neurological diseases. However, the role of mitochondrial fission in seizures, which could induce oxidative stress and neuronal loss, remains unknown. In this study, we used pilocarpine to elicit seizures in rats. Meanwhile, we used mitochondrial division(More)
Mesenchymal stem cells (MSCs) have been employed successfully to treat various immune disorders in animal models and clinical settings. Our previous studies have shown that MSCs can become highly immunosuppressive upon stimulation by inflammatory cytokines, an effect exerted through the concerted action of chemokines and nitric oxide (NO). Here, we show(More)
We studied the Brownian motion of isolated ellipsoidal particles in water confined to two dimensions and elucidated the effects of coupling between rotational and translational motion. By using digital video microscopy, we quantified the crossover from short-time anisotropic to long-time isotropic diffusion and directly measured probability distributions(More)
Mitochondrial dysfunction has been suggested to be a contributing factor of epilepsy, but the underlying mechanisms are not completely explored. Mitochondrial biogenesis is involved in regulation of mitochondrial content, morphology, and function. In the current study, we show mitochondrial biogenesis severely impaired in hippocampi of rats with chronic(More)
Most of the sounds of human speech are produced by vibration of the vocal folds, yet the biomechanics and control of these vibrations are poorly understood. In this study the muscle within the vocal fold, the thyroarytenoid muscle (TA), was examined for the presence and distribution of slow tonic muscle fibers (STF), a rare muscle fiber type with unique(More)
CXC chemokine receptor 4 (CXCR4) is a co-receptor for human immunodeficiency virus (HIV) infection and is believed to be involved in the pathogenesis of AIDS-associated neurologic disorders and brain tumors. The physiological roles of CXCR4 in developmental patterning of the nervous and hematopoietic system; gastrointestinal angiogenesis; and cardiac(More)