Learn More
We describe the CMU Sidewalk Navigation System, which can drive a vehicle in the outdoor environment of the CMU campus. The system includes all modules necessary for outdoor navigation .. modules for route planning, local path planning, vehicle driving, perception, and map data. The perception module uses sensor fusion with color and rage data to analyze(More)
We report progress in visual road following by autonomous robot vehicles. We present results and work in progress in the areas of system architecture, image rectification and camera calibration, oriented edge tracking, color classification and road-region segmentation, extracting geometric structure. and the use of a map. In test runs of an outdoor robot(More)
As the complexity of IC/LSI structures increase, verification of IC/LSI mask designs becomes extremely difficult and time-consuming. Also, verification of an IC/LSI mask pattern design requires much man-power as well. Further, the actual circuit realized onto IC/LSI chips may be quite different from that originally intended because of parasitic elements,(More)
The practical use of solid-state nanopores for DNA sequencing requires easy fabrication of the nanopores, reduction of the DNA movement speed and reduction of the ionic current noise. Here, we report an integrated nanopore platform with a nanobead structure that decelerates DNA movement and an insulating polyimide layer that reduces noise. To enable rapid(More)
We report a novel approach to slow the translocation of single-stranded DNA (ssDNA) by employing polyethylene oxide (PEO) filled nano-cylindrical domains as transportation channels. DNA strands were demonstrated to electrophoretically translocate through PEO filled cylindrical domains with diameters of 2 and 9 nm, which were self-assembled by amphiphilic(More)
DNA sequencing with a solid-state nanopore requires a reduction of the translocation speeds of single-stranded DNA (ssDNA) over 10 μs/base. In this study, we report that a nanometre-sized bead structure constructed around a nanopore can reduce the moving speed of ssDNA to 270 μs/base by adjusting the diameter of the bead and its surface chemical group. This(More)
A far-ultraviolet (FUV)-absorbance detector with a transmission flow cell was developed and applied to detect absorbance of sugars and peptides by HPLC. The main inherent limitation of FUV-absorbance detection is the strong absorptions of solvents and atmospheric oxygen in the optical system as well as dissolved oxygen in the solvent. High absorptivity of(More)
To achieve DNA sequencing using a solid-state nanopore, it is necessary to reduce the electric noise current. The noise current can be decreased by reducing the capacitance (C) of the nanopore device. However, we found that an electric-charge difference (ΔQ) between the electrolyte in one chamber and the electrolyte in another chamber occurred. For low(More)
To achieve DNA sequencing with solid-state nanopores, the speed of the DNA in the nanopore must be controlled to obtain sequence-specific signals. In this study, we fabricated a nanopore-sensing system equipped with a DNA motion controller. DNA strands were immobilized on a Si probe, and approach of this probe to the nanopore vicinity could be controlled(More)