Learn More
We report a novel tubular electrochemical cell which is operated in a cyclic adsorption - electro-Fenton process and by this means overcomes the drawbacks of the traditional electro-Fenton process. A microtube made only of multi-walled carbon nanotubes (MWCNT) functions as a gas diffusion electrode (GDE) and highly porous adsorber. In the process, the(More)
A modified pH 1.0 liquid redox sulfur recovery (LRSR) process, based on reactive absorption of H(2)S((g)) in an acidic (pH 1.0) iron solution ([Fe(III)] = 9-8 g L(-1), [Fe(II)] = 1-2 g L(-1)) and electrochemical regeneration of the Fe(III)/Fe(II) catalyst couple, is introduced. Fe(II) was oxidized in a flow-through electrolytic cell by Cl(2(aq)) formed on a(More)
Incomplete oxidation of Fe(II) species released from the anode to Fe(III) may impede iron electrocoagulation processes conducted under low dissolved oxygen and/or pH<7 conditions, accompanied by the typically high buffering capacity of wastewater. This paper introduces a new approach to overcome this drawback by applying a second electrochemical cell(More)
  • 1