Learn More
We measure the anisotropic midinfrared response of electrons and phonons in bulk YBa(2)Cu(3)O(7-δ) after femtosecond photoexcitation. A line shape analysis of specific lattice modes reveals their transient occupation and coupling to the superconducting condensate. The apex oxygen vibration is strongly excited within 150 fs, demonstrating that the lattice(More)
Quantum magnetic oscillations in SrTiO3/LaAlO3 interface are observed in the magnetoresistance. We study their frequency as a function of gate voltage and the evolution of their amplitude with temperature. The data are consistent with the Shubnikov-de Haas theory. The Hall resistivity ρ(xy) is nonlinear at low magnetic fields. ρ(xy) is fitted assuming(More)
Trematodes are significant pathogens of high medical, veterinary, and environmental importance. They are hard to isolate from their intermediate hosts, and their early life stages are difficult to identify morphologically. Therefore, primers were developed for trematodes to create a species barcoding system and allow selective PCR amplification in mixed(More)
We grow a tiled structure of insulating two-dimensional LaAlO3/SrTiO3 interfaces composed of alternating one and three LaAlO3 unit cells. The boundary between two tiles is conducting. At low temperatures this conductance exhibits quantized steps as a function of gate voltage indicative of a one-dimensional channel. The step size of half the quantum of(More)
We probe the mid-infrared conductivity of YBa<inf>2</inf>Cu<inf>3</inf>O<inf>7-&#x03B4;</inf> parallel and perpendicular to the CuO<inf>2</inf> planes after 12-fs optical excitation. Quasiparticle excitations and specific lattice modes are traced simultaneously during the photoinduced non-thermal transition to the normal state. The condensate is completely(More)
The interface between the two band insulators SrTiO3 and LaAlO3 has the unexpected properties of a two-dimensional electron gas. It is even superconducting with a transition temperature, T(c), that can be tuned using gate bias V(g), which controls the number of electrons added or removed from the interface. The gate bias-temperature (V(g), T) phase diagram(More)
The temperature dependence of the tunneling conductance was measured for various doping levels of Pr(2-x)CexCuO4 using planar junctions. A normal state gap is seen at all doping levels studied, x=0.11 to x=0.19. We find it to vanish above a certain temperature T*. T* is greater than T(c) for the underdoped region and it follows T(c) on the overdoped side.(More)
  • 1