Learn More
Diatoms are single-celled algae which possess characteristic rigid cell walls (frustules) composed of amorphous silica. Frustule formation occurs within a specialised organelle termed the silica deposition vesicle (SDV). During diatom morphogenesis, silica particles are transported to the SDV by silica transport vesicles. Once released within the SDV, the(More)
Using Dictyostelium discoideum as a model organism of specific and nonspecific adhesion, we studied the kinetics of shear flow-induced cell detachment. For a given cell, detachment occurs for values of the applied hydrodynamic stress above a threshold. Cells are removed from the substrate with an apparent first-order rate constant that strongly depends on(More)
Application of a mild hydrodynamic shear stress to Dicytostelium discoideum cells, unable to detach cells passively from the substrate, triggers a cellular response consisting of steady membrane peeling at the rear edge of the cell and periodic cell contact extensions at its front edge. Both processes require an active actin cytoskeleton. The cell movement(More)
We present a direct optical observation of the behavior of the contact area between a living cell (Dictyostelium discoideum) and a solid substrate under shear flow. It is shown that the membrane is peeled off the substrate. The relationship between the peeling velocity and the applied force is obtained experimentally and explained from the behavior of(More)
Previous theoretical studies of the mechanical properties of tissues such as skin, bone and tendon, have used approaches based on composite materials and have tended to neglect the contribution of individual microscopic components. In this paper, we examine the relationship between the fine structure of a collagen fibril and its relative tensile strength.(More)
Interactions between proteins and material or cellular surfaces are able to trigger protein aggregation in vitro and in vivo. The human insulin peptide segment LVEALYL is able to accelerate insulin aggregation in the presence of hydrophobic surfaces. We show that this peptide needs to be previously adsorbed on a hydrophobic surface to induce insulin(More)
The formation of insulin amyloidal aggregates on material surfaces is a well-known phenomenon with important pharmaceutical and medical implications. Using surface plasmon resonance imaging, we monitor insulin adsorption on model hydrophobic surfaces in real time. Insulin adsorbs in two phases: first, a very fast phase (less than 1 min), where a protein(More)
Among the different assays to measure cell adhesion, shear-flow detachment chambers offer the advantage to study both passive and active aspects of the phenomena on large cell numbers. Mathematical modeling allows full exploitation of the data by relating molecular parameters to cell mechanics. Using D. discoideum as a model system, we explain how cell(More)
A model is proposed, which predicts the toughness of 7000 series aluminium alloys in a variety of situations, including two alloy compositions, different quench rates from the solution treatment temperature and ageing states from underaged to overaged. The model is derived in three steps. The energy dissipated by transgranular fracture is first calculated,(More)
Advancement in the science and technology of random metallic nanowire (MNW) networks is crucial for their appropriate integration in many applications including transparent electrodes for optoelectronics and transparent film heaters. We have recently highlighted the discontinuous activation of efficient percolating pathways (EPPs) for networks having(More)