Xuncheng Liu

Learn More
HD2 proteins are plant specific histone deacetylases. Four HD2 proteins, HD2A, HD2B, HD2C, and HD2D, have been identified in Arabidopsis. It was found that the expression of HD2A, HD2B, HD2C, and HD2D was repressed by ABA and NaCl. To investigate the function of HD2 proteins further, two HD2C T-DNA insertion lines of Arabidopsis, hd2c-1 and hd2c-3 were(More)
Histone acetylation and deacetylation play an important role in epigenetic controls of gene expression. HISTONE DEACETYLASE6 (HDA6) is a REDUCED POTASSIUM DEPENDENCY3-type histone deacetylase, and the Arabidopsis (Arabidopsis thaliana) hda6 mutant axe1-5 displayed a late-flowering phenotype. axe1-5/flc-3 double mutants flowered earlier than axe1-5 plants,(More)
The molecular mechanism of how the histone deacetylase HDA6 participates in maintaining transposable element (TE) silencing in Arabidopsis (Arabidopsis thaliana) is not yet defined. In this study, we show that a subset of TEs was transcriptionally reactivated and that TE reactivation was associated with elevated histone H3 and H4 acetylation as well as(More)
ASYMMETRIC LEAVES 1 (AS1) is a MYB-type transcription repressor that controls leaf development by regulating KNOX gene expression, but the underlying molecular mechanism is still unclear. In this study, we demonstrated that AS1 can interact with the histone deacetylase HDA6 in vitro and in vivo. The KNOX genes were up-regulated and hyperacetylated in the(More)
PHYTOCHROME INTERACTING FACTOR3 (PIF3) is a key basic helix-loop-helix transcription factor of Arabidopsis thaliana that negatively regulates light responses, repressing chlorophyll biosynthesis, photosynthesis, and photomorphogenesis in the dark. However, the mechanism for the PIF3-mediated transcription regulation remains largely unknown. In this study,(More)
BRAHMA (BRM), a SWI/SNF chromatin remodeling ATPase, is essential for the transcriptional reprogramming associated with development and cell differentiation in Arabidopsis thaliana. In this study, we show that loss-of-function mutations in BRM led to defective maintenance of the root stem cell niche, decreased meristematic activity, and stunted root growth.(More)
Absorption spectra of polymer FBT-Th4 (1,4) (M n = 46.4 Kg/mol, E g = 1.62 eV, and HOMO = -5.36 eV) indicate strong interchain aggregation ability. High hole mobilities up to 1.92 cm(2) (V s)(-1) are demonstrated in OFETs fabricated under mild conditions. Inverted solar cells with active layer thicknesses ranging from 100 to 440 nm display PCEs exceeding(More)
Sensing environmental changes and initiating a gene expression response are important for plants as sessile autotrophs. The ability of epigenetic status to alter rapidly and reversibly could be a key component to the flexibility of plant responses to the environment. The involvement of epigenetic mechanisms in the response to environmental cues and to(More)
High hydrostatic pressure (HHP) is an extreme thermal-physical stress affecting multiple cellular activities. Recently, we found that HHP treatment caused various physiological changes in rice. To investigate the molecular mechanisms of plant response to HHP, we constructed forward and reverse subtracted cDNA libraries of rice seeds treated with 75MPa(More)
Histone methylation—transfer of methyl groups to lysines or arginines residues of histone tails—plays an important role in the regulation of gene expression in eukaryotic cells. Histone methylation levels are regulated by histone methyltransferases and histone demethylases. There are two types of histone lysine demethylases (KDMs) in eukaryotes:(More)