Learn More
Synapses display a stereotyped ultrastructural organization, commonly containing a single electron-dense presynaptic density surrounded by a cluster of synaptic vesicles. The mechanism controlling subsynaptic proportion is not understood. Loss of function in the C. elegans rpm-1 gene, a putative RING finger/E3 ubiquitin ligase, causes disorganized(More)
Lipid droplets (LDs) are important cellular organelles that govern the storage and turnover of lipids. Little is known about how the size of LDs is controlled, although LDs of diverse sizes have been observed in different tissues and under different (patho)physiological conditions. Recent studies have indicated that the size of LDs may influence(More)
Presynaptic terminals contain highly organized subcellular structures to facilitate neurotransmitter release. In C. elegans, the typical presynaptic terminal has an electron-dense active zone surrounded by synaptic vesicles. Loss-of-function mutations in the rpm-1 gene result in abnormally structured presynaptic terminals in GABAergic neuromuscular(More)
The aryl hydrocarbon receptors (AHR) are bHLH-PAS domain containing transcription factors. In mammals, they mediate responses to environmental toxins such as 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). Such functions of AHRs require a cofactor, the aryl hydrocarbon receptor nuclear translocator (ARNT), and the cytoplasmic chaperonins HSP90 and XAP2. AHR(More)
One of the challenges to understand the organization of the nervous system has been to determine how axon guidance molecules govern axon outgrowth. Through an unbiased genetic screen, we identified a conserved Wnt pathway which is crucial for anterior-posterior (A/P) outgrowth of neurites from RME head motor neurons in Caenorhabditis elegans. The pathway is(More)
The migration of cells and growth cones is a process that is guided by extracellular cues and requires the controlled remodeling of the extracellular matrix along the migratory path. The ADAM proteins are important regulators of cellular adhesion and recognition because they can combine regulated proteolysis with modulation of cell adhesion. We report that(More)
Niemann-Pick type C (NPC) disease is a fatal autosomal-recessive neurodegenerative disorder characterized by the inappropriate accumulation of unesterified cholesterol in aberrant organelles. The disease is due to mutations in either of two genes, NPC1, which encodes a transmembrane protein related to the Hedgehog receptor Patched, and NPC2, which encodes a(More)
Lipids are essential components of all organisms. Within cells, lipids are mainly stored in a specific type of organelle, called the lipid droplet. The molecular mechanisms governing the dynamics of lipid droplets have been little explored. The protein composition of lipid droplets has been analyzed in numerous proteomic studies, and a large number of lipid(More)
Mutations in the CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early onset neurodegenerative disorder. JNCL is the most common of the NCLs, a group of disorders with infant or childhood onset that are caused by single gene mutations. The NCLs, although relatively rare, share many pathological and clinical similarities(More)
Obesity is characterized by accumulation of excess body fat, while lipodystrophy is characterized by loss or absence of body fat. Despite their opposite phenotypes, these two conditions both cause ectopic lipid storage in non-adipose tissues, leading to lipotoxicity, which has health-threatening consequences. The exact mechanisms underlying ectopic lipid(More)