Learn More
Abnormal release of Ca from sarcoplasmic reticulum (SR) via the cardiac ryanodine receptor (RyR2) may contribute to contractile dysfunction and arrhythmogenesis in heart failure (HF). We previously demonstrated decreased Ca transient amplitude and SR Ca load associated with increased Na/Ca exchanger expression and enhanced diastolic SR Ca leak in an(More)
Abnormal release of Ca from sarcoplasmic reticulum (SR) via the cardiac ryanodine receptor (RyR2) may contribute to contractile dysfunction and arrhythmogenesis in heart failure (HF). We previously demonstrated decreased Ca transient amplitude and SR Ca load associated with increased Na/Ca exchanger expression and enhanced diastolic SR Ca leak in an(More)
In nonischemic heart failure (HF), ventricular tachycardia initiates by a nonreentrant mechanism, but there is altered conduction (that could lead to re-entry) that could arise from changes in gap junctional proteins, especially connexin43 (Cx43). We studied Cx43 expression and phosphorylation state in the left ventricle (LV) from an arrhythmogenic rabbit(More)
RATIONALE Increased activity of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is thought to promote heart failure (HF) progression. However, the importance of CaMKII phosphorylation of ryanodine receptors (RyR2) in HF development and associated diastolic sarcoplasmic reticulum Ca(2+) leak is unclear. OBJECTIVE Determine the role of CaMKII(More)
Ventricular tachycardia in heart failure (HF) can initiate by nonreentrant mechanisms such as delayed afterdepolarizations. In an arrhythmogenic rabbit model of HF, we have shown that isoproterenol induces ventricular tachycardia in vivo and aftercontractions and transient inward currents in HF myocytes. To determine whether beta(2)-adrenergic receptor(More)
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a myocardial disease characterized by fibro-fatty replacement of myocardium in the right ventricular free wall and frequently results in life-threatening ventricular arrhythmias and sudden cardiac death. A heterozygous missense mutation in the transmembrane protein 43 (TMEM43) gene, p.S358L, has been(More)
Smaller Ca2+ transients and systolic dysfunction in heart failure (HF) can be largely explained by reduced total sarcoplasmic reticulum (SR) Ca2+ content ([Ca]SRT). However, it is unknown whether low [Ca]SRT is manifest as reduced: (1) intra-SR free [Ca2+] ([Ca2+]SR), (2) intra-SR Ca2+ buffering, or (3) SR volume (as percentage of cell volume). Here we(More)
AIMS We previously showed decreased cellular coupling and dephosphorylation of the gap junctional protein connexin 43 (Cx43) in left ventricular (LV) myocytes from an arrhythmogenic rabbit model of non-ischaemic heart failure (HF) that was associated with a 2.5-fold increase in the amount of protein phosphatase type 2A (PP2A) co-localized with Cx43. Here,(More)
Intracellular [Na] is approximately 3 mmol/L higher in heart failure (HF; in our arrhythmogenic rabbit model), and this can profoundly affect cardiac Ca and contractile function via Na/Ca exchange and Na/H exchange. Na/K-ATPase is the primary mechanism of Na extrusion. We examine here in HF rabbits (and human hearts) expression of Na/K-ATPase isoforms and(More)
To investigate the effects of selenium on the main active components of Cordyceps militaris fruit bodies, selenium-enriched cultivation of C. militaris and the main active components of the fruit bodies were studied. Superoxide dismutase (SOD) activity and contents of cordycepin, cordycepic acid, and organic selenium of fruit bodies were sodium selenite(More)