Learn More
Synapses display a stereotyped ultrastructural organization, commonly containing a single electron-dense presynaptic density surrounded by a cluster of synaptic vesicles. The mechanism controlling subsynaptic proportion is not understood. Loss of function in the C. elegans rpm-1 gene, a putative RING finger/E3 ubiquitin ligase, causes disorganized(More)
Saliency in Context (SALICON) is an ongoing effort that aims at understanding and predicting visual attention. Conventional saliency models typically rely on low-level image statistics to predict human fixations. While these models perform significantly better than chance, there is still a large gap between model prediction and human behavior. This gap is(More)
Presynaptic terminals contain highly organized subcellular structures to facilitate neurotransmitter release. In C. elegans, the typical presynaptic terminal has an electron-dense active zone surrounded by synaptic vesicles. Loss-of-function mutations in the rpm-1 gene result in abnormally structured presynaptic terminals in GABAergic neuromuscular(More)
The aryl hydrocarbon receptors (AHR) are bHLH-PAS domain containing transcription factors. In mammals, they mediate responses to environmental toxins such as 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). Such functions of AHRs require a cofactor, the aryl hydrocarbon receptor nuclear translocator (ARNT), and the cytoplasmic chaperonins HSP90 and XAP2. AHR(More)
Lipid droplets (LDs) are important cellular organelles that govern the storage and turnover of lipids. Little is known about how the size of LDs is controlled, although LDs of diverse sizes have been observed in different tissues and under different (patho)physiological conditions. Recent studies have indicated that the size of LDs may influence(More)
Obesity is characterized by accumulation of excess body fat, while lipodystrophy is characterized by loss or absence of body fat. Despite their opposite phenotypes, these two conditions both cause ectopic lipid storage in non-adipose tissues, leading to lipotoxicity, which has health-threatening consequences. The exact mechanisms underlying ectopic lipid(More)
Lipids are essential components of all organisms. Within cells, lipids are mainly stored in a specific type of organelle, called the lipid droplet. The molecular mechanisms governing the dynamics of lipid droplets have been little explored. The protein composition of lipid droplets has been analyzed in numerous proteomic studies, and a large number of lipid(More)
Niemann-Pick type C (NPC) disease is a fatal autosomal-recessive neurodegenerative disorder characterized by the inappropriate accumulation of unesterified cholesterol in aberrant organelles. The disease is due to mutations in either of two genes, NPC1, which encodes a transmembrane protein related to the Hedgehog receptor Patched, and NPC2, which encodes a(More)
Insect ecdysone steroid hormone regulates major developmental transitions, such as molting and metamorphosis. The production of ecdysone correlates well with the timing of these transitions. Finding out how the ecdysone biosynthesis is regulated is crucial to fully understand these sophisticated developmental switches. Here we summarized recent findings in(More)
One of the challenges to understand the organization of the nervous system has been to determine how axon guidance molecules govern axon outgrowth. Through an unbiased genetic screen, we identified a conserved Wnt pathway which is crucial for anterior-posterior (A/P) outgrowth of neurites from RME head motor neurons in Caenorhabditis elegans. The pathway is(More)