Learn More
Wireless sensor networks promise a new paradigm for gathering data via collaboration among sensors spreading over a large geometrical region. Many real-time applications impose stringent delay requirements and ask for time-efficient schedules of data aggregations in which sensed data at sensors are combined at intermediate sensors along the way towards the(More)
Locating source of diffusion in networks is crucial for controlling and preventing epidemic risks. It has been studied under various probabilistic models. In this paper, we study source location from a deterministic point of view by modeling it as the minimum weighted doubly resolving set (DRS) problem, which is a strengthening of the well-known metric(More)
Braess’s paradox exposes a counterintuitive phenomenon that when travelers selfishly choose their routes in a network, removing links can improve the overall network performance. Under the model of nonatomic selfish routing, we characterize the topologies of k-commodity undirected and directed networks in which Braess’s paradox never occurs. Our results(More)
We study selfish routing in ring networks with respect to minimizing the maximum la-tency. Our main result is an establishement of constant bounds on the price of stability (PoS) for routing unsplittable flows with linear latency. We show that the PoS is at most 6.83, which reduces to 4.57 when the linear latency functions are homogeneous. We also show the(More)
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents(More)