Learn More
Numerous studies have demonstrated that damage of kidney of mice can be caused by exposure to titanium dioxide nanoparticles (TiO(2) NPs). However, the molecular mechanism of TiO(2) NPs-induced nephric injury remains unclear. In this study, the mechanism of nephric injury in mice induced by an intragastric administration of TiO(2) NPs was investigated. The(More)
Exposure to titanium dioxide nanoparticles (TiO(2) NPs) has been demonstrated to result in pulmonary inflammation in animals; however, very little is known about the molecular mechanisms of pulmonary injury due to TiO(2) NPs exposure. The aim of this study was to evaluate the oxidative stress and molecular mechanism associated with pulmonary inflammation in(More)
Correction After publication of this article [1], the authors became aware of the fact that the original version of this article missed equal contributor and corresponding author information. Intragastric exposure to titanium dioxide nanoparticles induced nephrotoxicity in mice, assessed by physiological and gene expression modifications. which permits(More)
Numerous studies have demonstrated that the brain is one of the target organs in acute or chronic titanium dioxide (TiO2) nanoparticles (NPs) toxicity, and oxidative stress plays an important role in this process. However, whether brain oxidative injury responds to TiO2 NPs by activating the P38-nuclear factor-E2-related factor-2 (Nrf-2) pathway is not(More)
Recent studies have demonstrated nanosized titanium dioxide (nano-TiO2)-induced fertility reduction and ovary injury in animals. To better understand how nano-TiO2 act in mice, female mice were exposed to 2.5, 5, and 10 mg/kg nano-TiO2 by intragastric administration for 90 consecutive days; the ovary injuries, fertility, hormone levels, and(More)
Although numerous studies have described the accumulation of titanium dioxide nanoparticles (TiO(2) NPs) in the liver, kidneys, lung, spleen, and brain, and the corresponding damage, it is unclear whether or not TiO(2) NPs can be translocated to the ovary and cause ovarian injury, thus impairing fertility. In the current study, ovarian injury and(More)
Exposure to titanium dioxide nanoparticles (TiO(2) NPs) elicits an adverse response such as oxidative damage. The molecular targets of TiO(2) NPs remain largely unidentified. In the present study, the function and signal pathway of nuclear factor erythroid 2 related factor 2 (Nrf2) in protection against TiO(2) NPs-induced oxidative stress in the mouse lung(More)
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in toothpastes, sunscreens, and products for cosmetic purpose that the human use daily. Although the neurotoxicity induced by TiO2 NPs has been demonstrated, very little is known about the molecular mechanisms underlying the brain cognition and behavioral injury. In this study, mice were exposed to(More)
Although titanium dioxide nanoparticles (TiO2 NPs) have been demonstrated to accumulate in organs resulting in toxicity, there is currently only limited data regarding male reproductive toxicity by TiO2 NPs. In this study, testicular damage and alterations in gene expression profiles in male mice induced by intragastric administration of 2.5, 5, and 10mg/kg(More)
To understand the chronic spleen injury induced by intragastric administrations with 2.5, 5, and 10 mg kg(-1) body weight titanium dioxide nanoparticles (TiO(2) NPs) for 90 consecutive days, histopathological and ultrastructure changes, hematological parameters, lymphocyte subsets, the inflammatory, and apoptotic cytokines in the mouse spleen were(More)