Xueying Zhan

Learn More
Considerable efforts have been devoted to enhancing the photocatalytic activity and solar energy utilization of photocatalysts. The fabrication of type II heterostructures plays an important role in photocatalysts modification and has been extensively studied. In this review, we briefly trace the application of type II heterostructured semiconductors in the(More)
We report a high-performance field-effect transistor (FET) and phototransistor based on back-gated multilayer GaTe nanosheets. Through both electrical transport measurements at variable temperatures and first-principles calculations, we find Ga ion vacancy is the critical factor that causes high off-state current, low on/off ratio, and large hysteresis of(More)
Owing to the excellent potential for fundamental research and technical applications in optoelectronic devices and catalytic activity for hydrogen evolution reaction (HER), transition metal dichalcogenides have recently attracted much attention. Transition metal sulfide nanostructures have been reported and demonstrated promising application in transistors(More)
Ultralarge topological crystalline insulator Pb1-x Snx Te nanoplates are developed by controlling substrate surface chemical properties in a cost-efficient chemical vapor deposition (CVD) process. Dominant topological surface transport is demonstrated by a gate-voltage-controlled weak (anti)localization effect, indicating the potential application of these(More)
Binary transition metal dichalcogenides (TMDs) have emerged as efficient catalysts for the hydrogen evolution reaction (HER). Co-based TMDs, such as CoS2 and CoSe2, demonstrate promising HER performance due to their intrinsic metallic nature. Recently, the ternary electrocatalysts were widely acknowledged for their prominent efficiency as compared to their(More)
Among active pseudocapacitive materials, polypyrrole (PPy) is a promising electrode material in electrochemical capacitors. PPy-based materials research has thus far focused on its electrochemical performance as a positive electrode rather than as a negative electrode for asymmetric supercapacitors (ASCs). Here high-performance electrochemical(More)
The desire for sustainable and clean energy future continues to be the concern of the scientific community. Researchers are incessantly targeting the development of scalable and abundant electro- or photo-catalysts for water splitting. Owing to their suitable band-gap and excellent stability, an enormous amount of transition-metal dichalcogenides (TMDs)(More)
A low-cost, compatible with flexible electronics, high performance UV sensor has been achieved from a reduced graphene oxide (RGO) decorated hydrangea-like ZnO film on a PDMS substrate. The hydrangea-like ZnO UV sensor has the best UV sensing performance among devices made of three kinds of ZnO nanostructures synthesized by a hydrothermal method, and(More)
We demonstrate that high-quality vertically aligned SnSe nanorod (NR) arrays have been synthesized via a facile chemical vapor deposition method on SiO₂ substrates using Bi powder as catalysts. Both SEM and TEM measurements reveal that this kind of SnSe NR consists of a one-dimensional core and dense two-dimensional branches. Thermistors and photoresistors(More)