Learn More
DNA methylation plays an essential role in transcriptional control of organismal development in epigenetics, from turning off a specific gene to inactivation of entire chromosomes. While the biological function of DNA methylation is becoming increasingly clear, the mechanism of methylation-induced gene regulation is still poorly understood. Through(More)
Colorectal cancer (CRC), which is notorious for high morbidity and mortality around the world, shows a predilection for metastasis to liver. Interleukin-8 (IL-8), a chemokine with a defining CXC amino acid motif, has been reported to promote CRC cell migration and is associated with poor prognosis of CRC. However, the underlying molecular mechanism of(More)
DNA methylation is a key regulatory control route in epigenetics, involving gene silencing and chromosome inactivation. It has been recognized that methyl-CpG binding domain (MBD) proteins play an important role in interpreting the genetic information encoded by methylated DNA (mDNA). Although the function of MBD proteins has attracted considerable(More)
Nanopore-based single-molecule detection and analysis have been pursued intensively over the past decade. One of the most promising applications in this regard is DNA sequencing achieved through DNA translocation-induced blockades in ionic current. Recently, nanopores fabricated in graphene sheets were used to detect double-stranded DNA. Due to its(More)
Flow-induced shear has been identified as a regulatory driving force in blood clotting. Shear induces b-hairpin folding of the glycoprotein Iba b-switch which increases affinity for binding to the von Willebrand factor, a key step in blood clot formation and wound healing. Through 2.1-ms molecular dynamics simulations, we investigate the kinetics of(More)
Epigenetic modifications in eukaryotic genomes occur primarily in the form of 5-methylcytosine (5 mC). These modifications are heavily involved in transcriptional repression, gene regulation, development and the progression of diseases including cancer. We report a new single-molecule assay for the detection of DNA methylation using solid-state nanopores.(More)
Both eukaryotic translation initiation factor 4E (eIF4E) and integrin αvβ6 play an important role in the development and progression of cancer. The aim of this study was to investigate the expression of eIF4E and Integrin αvβ6, their clinical significance as well as the two proteins’ correlation in colonic carcinoma tissues. The expression levels of eIF4E(More)
Cytosine hydroxymethylation is an epigenetic control factor in higher organisms. New discoveries of the biological roles of hydroxymethylation serve to raise questions about how this epigenetic modification exerts its functions and how organisms discriminate cytosine hydroxymethylation from methylation. Here, we report investigations that reveal an effect(More)
Flow-induced shear has been identified as a regulatory driving force in blood clotting. Shear induces beta-hairpin folding of the glycoprotein Ibalpha beta-switch which increases affinity for binding to the von Willebrand factor, a key step in blood clot formation and wound healing. Through 2.1-micros molecular dynamics simulations, we investigate the(More)
Sequence-specific DNA-binding proteins must quickly and reliably localize specific target sites on DNA. This search process has been well characterized for monomeric proteins, but it remains poorly understood for systems that require assembly into dimers or oligomers at the target site. We present a single-molecule study of the target-search mechanism of(More)