Learn More
Plants with altered microRNA metabolism have pleiotropic developmental defects, but direct evidence for microRNAs regulating specific aspects of plant morphogenesis has been lacking. In a genetic screen, we identified the JAW locus, which produces a microRNA that can guide messenger RNA cleavage of several TCP genes controlling leaf development.(More)
Most organs of flowering plants develop postembryonically from groups of pluripotent cells called meristems [1]. The shoot apical meristem (SAM) is specified by two complementary pathways [2-4]. SHOOT MERISTEMLESS (STM; [5]) defines the entire SAM region [6]. WUSCHEL (WUS), on the other hand, functions in a more restricted set of cells to promote stem-cell(More)
Tissue growth as the result of cell division is an essential part of embryonic development. Previous studies have shown that STIMPY (STIP)/WOX9, a homeodomain transcription factor of the Arabidopsis thaliana WOX family, is required for maintaining cell division and preventing premature differentiation in emerging seedlings. Here we present evidence that(More)
Gradients of regulatory factors are essential for establishing precise patterns of gene expression during development; however, it is not clear how patterning information in multiple gradients is integrated to generate complex body plans. Here we show that opposing gradients of two Drosophila transcriptional repressors, Hunchback (Hb) and Knirps (Kni),(More)
MADS-box genes encode a family of transcription factors that regulate diverse developmental programs in plants. The present work shows the regulation of flowering time by AGL6 through control of the transcription of both a subset of the FLOWERING LOCUS C (FLC) family genes and FT, two key regulators of flowering time. The agl6-1D mutant, in which AGL6 was(More)
A recent and intriguing discovery in plant biology has been that some transcription factors can move between cells. In Arabidopsis thaliana, the floral identity protein LEAFY has strong non-autonomous effects when expressed in the epidermis, mediated by its movement into underlying tissue layers. By contrast, a structurally unrelated floral identity(More)
Most organs in higher plants are generated postembryonically from the meristems, which harbor continuously dividing stem cells throughout a plant's life cycle. In addition to developmental regulations, mitotic activities in the meristematic tissues are modulated by nutritional cues, including carbon source availability. Here we further analyze the(More)
The establishment of the primary meristems through proliferation after germination is essential for plant post-embryonic development. Cytokinins have long been considered a key regulator of plant cell division. Here we show that cytokinins are essential for early seedling development of Arabidopsis. Loss of cytokinin perception leads to a complete failure(More)
One of the key events in dicot plant embryogenesis is the emergence of the two cotyledon primordia, which marks the transition from radial symmetry to bilateral symmetry. In Arabidopsis thaliana, the three CUP-SHAPED COTYLEDON (CUC) genes are responsible for determining the boundary region between the cotyledons. However, the mechanisms controlling their(More)