Xuelei Liang

Learn More
We present a rigorous formalism of information transfer for systems with dynamics fully known. This follows from an accurate classification of the mechanisms for the entropy change of one component into a self-evolution plus a transfer from the other component. The formalism applies to both continuous flows and discrete maps. The resulting transfer measure(More)
We present the results of a thorough study of wet chemical methods for transferring chemical vapor deposition grown graphene from the metal growth substrate to a device-compatible substrate. On the basis of these results, we have developed a "modified RCA clean" transfer method that has much better control of both contamination and crack formation and does(More)
  • Xuelei Liang
  • Physical review. E, Statistical, nonlinear, and…
  • 2014
Given two time series, can one faithfully tell, in a rigorous and quantitative way, the cause and effect between them? Based on a recently rigorized physical notion, namely, information flow, we solve an inverse problem and give this important and challenging question, which is of interest in a wide variety of disciplines, a positive answer. Here causality(More)
This paper addresses a bias problem in the estimate of wavelet power spectra for atmospheric and oceanic datasets. For a time series comprised of sine waves with the same amplitude at different frequencies the conventionally adopted wavelet method does not produce a spectrum with identical peaks, in contrast to a Fourier analysis. The wavelet power spectrum(More)
Semiconducting single-walled carbon nanotubes (SWCNTs) are one-dimensional (1D) and direct band gap materials with unique electric and optical properties and are promising candidates for future nanoelectronics and optoelectronics.1,2 The use of carbon nanotube (CNTs), nanowires, and other nanomaterials represents a typical approach to reduce both cost and(More)
  • Xuelei Liang
  • Physical review. E, Statistical, nonlinear, and…
  • 2008
Information flow or information transfer is an important concept in general physics and dynamical systems which has applications in a wide variety of scientific disciplines. In this study, we show that a rigorous formalism can be established in the context of a generic stochastic dynamical system. An explicit formula has been obtained for the resulting(More)
Electroluminescence (EL) measurements are carried out on a two-terminal carbon nanotube (CNT) based light-emitting diode (LED). This two-terminal device is composed of an asymmetrically contacted semiconducting single-walled carbon nanotube (SWCNT). On the one end the SWCNT is contacted with Sc and on the other end with Pd. At large forward bias, with the(More)
Field-effect transistors (GFETs) were fabricated on mechanically flexible substrates using chemical vapor deposition grown graphene. High current density (nearly 200 μA μm(-1)) with saturation, almost perfect ambipolar electron-hole behavior, high transconductance (120 μS μm(-1)) and good stability over 381 days were obtained. The average carrier mobility(More)
Near ballistic n-type single-walled carbon nanotube field-effect transistors (SWCNT FETs) have been fabricated with a novel self-aligned gate structure and a channel length of about 120 nm on a SWCNT with a diameter of 1.5 nm. The device shows excellent on- and off-state performance, including high transconductance of up to 25 microS, small subthreshold(More)
We demonstrate a graphene-based electro-absorption modulator achieving extraordinary control of terahertz reflectance. By concentrating the electric field intensity in an active layer of graphene, an extraordinary modulation depth of 64% is achieved while simultaneously exhibiting low insertion loss (∼2 dB), which is remarkable since the active region of(More)