Learn More
The unilaterally lesioned rat model of Parkinson's disease which fails to orient to the food stimuli presented on the contralateral side of its preferential side of body could be induced by the injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle (MFB). We employed transcranial direct current stimulation (tDCS, current intensity: 80 μA,(More)
—The PowerChip research program is developing technologies to radically improve the size, integration, and performance of power electronics operating at up to grid-scale voltages (e.g., up to 200 V) and low-to-moderate power levels (e.g., up to 50 W) and demonstrating the technologies in a high-efficiency light-emitting diode driver, as an example(More)
This paper reports an optimized design and micro-fabrication approach for silicon-integrated elongated-spiral inductors for on-chip power conversion. The inductors are designed for high-power-density and high-efficiency DC-DC converters which transfer 25 W of power at frequencies between 5 and 30 MHz. The predicted power density of the inductors is close to(More)
Single-session anodal transcranial direct current stimulation (tDCS) can improve the learning-memory function of patients with Alzheimer's disease (AD). After-effects of tDCS can be more significant if the stimulation is repeated regularly in a period. Here the behavioral and the histologic effects of the repetitive anodal tDCS on a rat model of AD were(More)
—This paper presents the derivation and verification of a sinusoidal-steady-state equivalent-circuit model for microfabricated inductors developed for use in integrated power electronics. These inductors have a low profile, a toroidal air core, and a single-layer winding fabricated via high-aspect-ratio molding and electroplating. Such inductors inevitably(More)
  • 1