Learn More
Adult ependymal cells are postmitotic and highly differentiated. Radial glial cells are neurogenic precursors. Here, we show that stroke acutely stimulated adult ependymal cell proliferation, and dividing ependymal cells of the lateral ventricle had genotype, phenotype, and morphology of radial glial cells in the rat. The majority of radial glial cells(More)
BACKGROUND AND PURPOSE Motor recovery after stroke is associated with neuronal reorganization in bilateral hemispheres. We investigated contralesional corticospinal tract remodeling in the brain and spinal cord in rats after stroke and treatment of bone marrow stromal cells. METHODS Adult male Wistar rats were subjected to permanent right middle cerebral(More)
BACKGROUND AND PURPOSE To measure cerebral vascular and neuronal responses after stroke in the living mouse, we generated a mouse model of embolic stroke localized to the parietal cortex. METHODS Male C57/6J or male transgenic mice (2 to 3 months old) expressing yellow fluorescent protein (YFP) were used in the present study. A single fibrin-rich clot (8(More)
We investigated whether compensatory reinnervation in the corticospinal tract (CST) and the corticorubral tract (CRT) is enhanced by the administration of bone marrow stromal cells (BMSCs) after experimental stroke. Adult male Wistar rats were subjected to permanent right middle cerebral artery occlusion (MCAo). Phosphate-buffered saline (PBS, control, n=7)(More)
Abstract The current study used a rat model to investigate the underlying mechanisms of blast-induced tinnitus, hearing loss, and associated traumatic brain injury (TBI). Seven rats were used to evaluate behavioral evidence of tinnitus and hearing loss, and TBI using magnetic resonance imaging following a single 10-msec blast at 14 psi or 194 dB sound(More)
Recent clinical studies have demonstrated that auditory cortex electrical stimulation (ACES) has yielded promising results in the suppression of patients' tinnitus. However, the large variability in the efficacy of ACES-induced suppression across individuals has hindered its development into a reliable therapy. Due to ethical reasons, many issues cannot be(More)
Using retrograde tract-tracing and electrophysiological methods, we characterized the anatomical and functional relationship between the central nucleus of the amygdala and the dorsal vagal complex. Retrograde tract-tracing techniques revealed that the central nucleus of the amygdala projects to the dorsal vagal complex with a topographic distribution.(More)
Galanin plays an important role in the regulation of food intake, energy balance, and body weight. Many galanin-positive fibers as well as galanin-positive neurons were seen in the dorsal vagal complex, suggesting that galanin produces its effects by actions involving vagal neurons. In the present experiment, we used tract-tracing and neurophysiological(More)
Data have shown that the paraventricular nucleus of the hypothalamus (PVN) and the dorsal motor nucleus of the vagus (DMNV) play important roles in the regulation of gastrointestinal function and eating behavior. Anatomical studies have demonstrated direct projections from the PVN to the DMNV and physiological studies showed that the DMNV mediates many of(More)
Vago-vagal reflexes play an integral role in the regulation of gastrointestinal function. Although there have been a number of reports describing the effects of various stimuli on the firing rates of vagal afferent fibers and vagal motor neurons, little is known regarding the neurotransmitters that mediate the vago-vagal reflexes. In the present work, we(More)