Xueguang Shao

Learn More
A parallel fast annealing evolutionary algorithm (PFAEA) was presented and applied to optimize Lennard-Jones (LJ) clusters. All the lowest known minima up to LJ(116) with both icosahedral and nonicosahedral structure, including the truncated octahedron of LJ(38), central fcc tetrahedron of LJ(98), the Marks' decahedron of LJ(75)(-)(77), and LJ(102)(-)(104),(More)
By combining the aspect of population in genetic algorithms (GAs) and the simulated annealing algorithm (SAA), a novel algorithm, called fast annealing evolutionary algorithm (FAEA), is proposed. The algorithm is similar to the annealing evolutionary algorithm (AEA), and a very fast annealing technique is adopted for the annealing procedure. By an(More)
The normalized auto- and cross-covariance functions of discrete-time stochastic point process, used for quantitatively analyzing neuronal spike trains, were derived from the corresponding functions of general stochastic process using Kronecker delta functions. The auto-correlation and cross-correlation properties can be described as numerical differences on(More)
A random tunneling algorithm (RTA) is derived from the terminal repeller unconstrained subenergy tunneling (TRUST) algorithm, and the parallelization of the RTA is implemented with an island parallel paradigm. Combined with the techniques of angular moving, the parallel random tunneling algorithm (PRTA) is applied to the optimization of Lennard-Jones (LJ)(More)
Class prediction based on DNA microarray data has been emerged as one of the most important application of bioinformatics for diagnostics/prognostics. Robust classifiers are needed that use most biologically relevant genes embedded in the data. A consensus approach that combines multiple classifiers has attributes that mitigate this difficulty compared to a(More)
A new hybrid algorithm is proposed to eliminate the interference information for multivariate calibration of near-infrared (NIR) spectra that includes noise, background and systemic spectral variation irrelevant to concentration. The method consists of two parts: approximate derivative based on continuous wavelet transform (CWT) and orthogonal signal(More)
A novel method based on continuous wavelet transform (CWT) was proposed as a preprocessing tool for the near-infrared (NIR) spectra. Due to the property of the vanishing moments of the wavelet, the fluctuating background of the NIR spectra can be successfully removed through convolution of the spectra with an appropriate wavelet function. The vanishing(More)
The structures of silver clusters from Ag(121) to Ag(160) were optimized with a modified dynamic lattice searching (DLS) method, named as DLS with constructed core (DLSc). The interaction among silver atoms is modeled by the Gupta potential. Structural characteristic of silver clusters with the growth of cluster size is investigated with the newly optimized(More)
Double layer charging current in electrochemical systems has been a challenging problem in the last several decades because it causes interference to the accurate measurement of faradaic current. A method for extracting faradaic current and double layer charging current directly from the measured total current in potential step voltammetry is developed by(More)