Xue-fei Yu

Learn More
We report the 4.97-Mb draft genome sequence of a highly efficient arsenate-resistant bacterium, Ochrobactrum sp. strain CDB2. It contains a novel arsenic resistance (ars) operon (arsR-arsC1-ACR3-arsC2-arsH-mfs) and two non-operon-associated ars genes, arsC3 and arsB. The genome information will aid in the understanding of the arsenic resistance mechanism of(More)
Accurate heading perception relies on visual information integrated across a wide field, that is, optic flow. Numerous computational studies have speculated how local visual information might be pooled by the brain to compute heading, but these hypotheses lack direct neurophysiological support. In the current study, we instructed human and monkey subjects(More)
The generation of auditory-evoked steady-state responses (SSRs) is associated with the linear superposition of transient auditory-evoked potentials (AEPs) that cannot be directly observed. A straightforward way to justify the superposition hypothesis is the use of synthesized SSRs by a transient AEP under a predefined condition based on the forward process(More)
Bacillus sp. CDB3 possesses a novel eight-gene ars cluster (ars1, arsRYCDATorf7orf8) with some unusual features in regard to expression regulation. This study demonstrated that the cluster is a single operon but can also produce a short three-gene arsRYC transcript. A hairpin structure formed by internal inverted repeats between arsC and arsD was shown to(More)
In bacteria, threonine dehydratases could convert L-threonine to 2-ketobutyrate. Some threonine dehydratases contain only a catalytic domain, while others contain an N-terminal catalytic domain and a C-terminal regulatory domain composed of one or two ACT-like subdomains. However, the role of the ACT-like subdomain in threonine dehydratases is not clear.(More)
Threonine dehydratase converts L-threonine to 2-ketobutyrate. Several threonine dehydratases exist in bacteria, but their origins and evolutionary pathway are unknown. Here we analyzed all the available threonine dehydratases in bacteria and proposed an evolutionary pathway leading to the genes encoding three different threonine dehydratases CTD, BTD1 and(More)
  • 1