Xue Qing Wang

Learn More
The mechanism underlying the upregulation of NMDA receptor function by group I metabotropic glutamate receptors (mGluRs), including mGluR1 and 5, is not known. Here we show that in cortical neurons, brief selective activation of group I mGluRs with (S)-3,5-dihydroxy-phenylglycine (DHPG) induced a Ca(2+)-calmodulin-dependent activation of Pyk2/CAKbeta and(More)
K(+) channel blockers such as 4-aminopyridine (4-AP) can be toxic to neurons; the cellular mechanism underlying the toxicity, however, is obscure. In cultured mouse cortical neurons, we tested the hypothesis that the toxic effect of 4-AP might result from inhibiting the Na(+),K(+)-ATPase (Na(+),K(+)-pump) and thereafter induction of a hybrid death of(More)
It is well established that ligand-gated chloride flux across the plasma membrane modulates neuronal excitability. We find that a voltage-dependent Cl(-) conductance increases neuronal excitability in immature rodents as well, enhancing the time course of NMDA receptor-mediated miniature excitatory postsynaptic potentials (mEPSPs). This Cl(-) conductance is(More)
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized at apical cell membranes and exists in macromolecular complexes with a variety of signaling and transporter molecules. Here, we report that the multidrug resistance protein 4 (MRP4), a cAMP transporter, functionally and physically associates with CFTR.(More)
Dysfunction of the Na(+),K(+)-ATPase (Na(+),K(+)-pump), due to reduced energy supply or increased endogenous ouabain-like inhibitors, likely occurs under pathological conditions in the central nervous system. In cultured mouse cortical neurons, we examined the hypothesis that a mild non-toxic inhibition of the Na(+),K(+)-ATPase could synergistically(More)
To test the novel hypothesis that the K+ efflux mediated by NMDA receptors might be regulated differently than the influx of Ca2+ and Na+ through the same receptor channels, NMDA receptor whole-cell currents carried concurrently or individually by Ca2+, Na+ and K+ were analysed in cultured mouse cortical neurons. In contrast to the NMDA inward current(More)
The Na+, K+-ATPase or Na+, K+-pump plays a critical role in ion homeostasis and many cellular events. The Na+, K+-pump activity is regulated by serine/threonine phosphorylation, the role of tyrosine kinases in the regulation, however, is obscure. We now present novel evidence showing that tyrosine phosphorylation activates the Na+, K+-pump in cortical(More)
The class III antiarrhythmic agent 4-chloro-N,N-diethyl-N-heptyl-benzene butanaminium (clofilium) is known as a K+ channel open-channel blocker and has either anti- or proapoptotic property due to undefined mechanisms. Based on the evidence that neuronal viability is largely, sometimes critically, affected by voltage- and ligand-gated Ca2+ channels and the(More)
  • 1