Learn More
Microglial activation worsens neuronal loss and contributes to progressive neurological diseases like Parkinson's disease (PD). This inflammatory progression is countered by dynorphin (Dyn), the endogenous ligand of the kappa-opioid receptor (KOR). We show that microglial β-arrestin mediates the ability of Dyn/KOR to limit endotoxin-elicited production of(More)
In this study, we proposed a loop transplant strategy to improve the thermostability of Penicillium purpurogenum Li-3 β-glucuronidase expressed in Escherichia coli (abbreviated to PGUS-E). Firstly, three unstable surface loops of PGUS-E to be replaced were identified with regards to B-factor values and in-depth structure analysis: loops 205–211, 258–263,(More)
Superoxide is the primary reactive oxygen species generated in the mitochondria. Manganese superoxide dismutase (SOD2) is the major enzymatic superoxide scavenger present in the mitochondrial matrix and one of the most crucial reactive oxygen species-scavenging enzymes in the cell. SOD2 is activated by sirtuin 3 (SIRT3) through NAD(+)-dependent(More)
Introduction of Gadolinium (Gd) to the nervous system is linked to the development of neurotoxicity involving both oxidative and endoplasmic reticulum (ER) stress. Gd levels (0.2-20 μm) in the form of gadolinium trichloride (GdCl(3)) cause neurotoxicity in vitro. We investigated the signaling pathways in primary cultured rat cortical neurons and tested(More)
Tolerance to endotoxins that is triggered by prior exposure to Toll-like receptor (TLR) ligands provides a mechanism with which to dampen inflammatory cytokines. The receptor-interacting protein RIP140 interacts with the transcription factor NF-κB to regulate the expression of genes encoding proinflammatory cytokines. Here we found lipopolysaccharide(More)
Gadolinium (Gd), a rare-earth lanthanides metal, is widely utilized for various industrial and medical purposes, particularly in brain magnetic resonance imaging. However, its potential effects on the impairment of the central nervous system remain uncertain, especially with regard to the mitochondria, the potential primary target in metal-induced neural(More)
Receptor-interacting protein (RIP140) is a transcription co-regulator highly expressed in macrophages to regulate inflammatory and metabolic processes. However, its implication in neurological, cognitive and emotional conditions, and the cellular systems relevant to its biological activity within the central nervous system are currently less clear. A(More)
Maintaining pluripotency and indefinite self-renewal of embryonic stem cells requires a tight control of the expression of several key stemness factors, particularly Nanog and Oct4 transcription factors. The mammalian SWItch/Sucrose NonFermentable (SWI/SNF) complex contains Brg1 or Brm as its core subunit, along with Brg1-associated factors. Our previous(More)
Inositol 1, 4, 5-trisphosphate receptor (IP3R)-mediated Ca(2+) release from the endoplasmic reticulum (ER) triggers many physiological responses in neurons, and when uncontrolled can cause ER stress that contributes to neurological disease. Here we show that the unfolded protein response (UPR) in neurons induces rapid translocation of nuclear(More)
The growth and production of microorganisms in bioconversion are often hampered by heat stress. In this study, an intelligent microbial heat-regulating engine (IMHeRE) was developed and customized to improve the thermo-robustness of Escherichia coli via the integration of a thermotolerant system and a quorum-regulating system. At the cell level, the(More)