Learn More
Age-related macular degeneration (AMD) is a leading cause of vision loss affecting tens of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as well as pigmentary changes in the retinal pigment epithelium (RPE). These soft, confluent drusen can progress into two forms of advanced AMD: geographic atrophy (GA, or dry(More)
OBJECTIVES This study was designed to explore the effect and mechanism of matrine, an active component of Chinese traditional medicine, on isoproterenol-induced acute cardiotoxicity in rats. METHODS Acute myocardial injury was induced in rats by daily subcutaneous injection of isoproterenol (85 mg/kg) for two days. Haemodynamic and biochemical parameters(More)
Sterol regulatory element-binding proteins (SREBPs) are major transcription factors regulating the expression of genes involved in biosynthesis of cholesterol, fatty acids, and triglycerides. We investigated the effect of the specific SREBP suppressor andrographolide, a natural compound isolated from Andrographis paniculata, on the regulation of SREBP(More)
OBJECTIVE To observe the relationship between changes in renin-angiotensin-aldosterone system (RAAS) activity and blood plasma glucose after administration of hydrochlorothiazide (HCTZ) for one year in patients with hypertension. METHODS 108 hypertensive patients were given 12.5 mg HCTZ per day for one year. RAAS activity, plasma glucose levels, and other(More)
Sterol regulatory element-binding proteins (SREBPs) are major transcription factors regulating the biosynthesis of cholesterol, fatty acid, and triglyceride. They control the expression of crucial genes involved in lipogenesis and uptake. In this review, we summarize the processing of SREBPs and their regulation by insulin, cAMP, and vitamin A, and the(More)
A type of strain sensor with high tolerable strain based on a ZnO nanowires/polystyrene nanofibers hybrid structure on a polydimethylsiloxane film is reported. The novel strain sensor can measure and withstand high strain and demonstrates good performance on rapid human-motion measurements. In addition, the device could be driven by solar cells. The results(More)
A highly flexible solid-state supercapacitor was fabricated through a simple flame synthesis method and electrochemical deposition process based on a carbon nanoparticles/MnO(2) nanorods hybrid structure using polyvinyl alcohol/H(3)PO(4) electrolyte. Carbon fabric is used as a current collector and electrode (mechanical support), leading to a simplified,(More)
All-solid-state flexible supercapacitors based on a carbon/MnO(2) (C/M) core-shell fiber structure were fabricated with high electrochemical performance such as high rate capability with a scan rate up to 20 V s(-1), high volume capacitance of 2.5 F cm(-3), and an energy density of 2.2 × 10(-4) Wh cm(-3). By integrating with a triboelectric generator,(More)
Although MnO2 is a promising material for supercapacitors (SCs) due to its excellent electrochemical performance and natural abundance, its wide application is limited by poor electrical conductivity. Inspired by our results that the electrochemical activity and electrical conductivity of ZnO nanowires were greatly improved after hydrogenation, we designed(More)