Learn More
The endoplasmic reticulum (ER) Ca(2+) sensor, STIM1, becomes activated when ER-stored Ca(2+) is depleted and translocates into ER-plasma membrane junctions where it tethers and activates Orai1 Ca(2+) entry channels. The dimeric STIM1 protein contains a small STIM-Orai-activating region (SOAR)--the minimal sequence sufficient to activate Orai1 channels.(More)
STIM1 and STIM2 are widely expressed endoplasmic reticulum (ER) Ca(2+) sensor proteins able to translocate within the ER membrane to physically couple with and gate plasma membrane Orai Ca(2+) channels. Although they are structurally similar, we reveal critical differences in the function of the short STIM-Orai-activating regions (SOAR) of STIM1 and STIM2.(More)
The ubiquitously expressed Orai Ca2+ channels are gated through a unique process of intermembrane coupling with the Ca2+-sensing STIM proteins. Despite the significance of Orai1-mediated Ca2+ signals, how gating of Orai1 is triggered by STIM1 remains unknown. A widely held gating model invokes STIM1 binding directly to Orai1 pore-forming helix. Here we(More)
The coupling of ER Ca(2+)-sensing STIM proteins and PM Orai Ca(2+) entry channels generates "store-operated" Ca(2+) signals crucial in controlling responses in many cell types. The dimeric derivative of 2-aminoethoxydiphenyl borinate (2-APB), DPB162-AE, blocks functional coupling between STIM1 and Orai1 with an IC50 (200 nM) 100-fold lower than 2-APB.(More)
OBJECTIVE To clone plasmid from chinaberry witches'-broom phytoplasma and analyse its molecular characterization. METHODS Fragments of one plasmid (pCWBFq) in chinaberry witches'-broom phytoplasma-Fuqing strain (CWBFq) were amplified with primer pairs which were designed according to plasmid sequences published on NCBI. Transmembrane domain and(More)
  • 1