Xiwei Zhang

  • Citations Per Year
Learn More
Single-crystalline organic nanowires (NWs) are important building blocks for future low-cost and efficient nano-optoelectronic devices due to their extraordinary properties. However, it remains a critical challenge to achieve large-scale organic NW array assembly and device integration. Herein, we demonstrate a feasible one-step method for large-area(More)
Nano-heterojunctions will play essential roles in future nano-electronic and nano-optoelectronic devices. However, their extensive applications are impeded by the complicated multi-step growth method involved and the requirements for precise nanowire (NW) positioning/alignment. Here, we develop a facile method to fabricate zinc selenide NW (ZnSeNW)/silicon(More)
Organic nanostructure-based photodetectors are important building blocks for future high-performance, low-cost, flexible nano-optoelectronic devices. However, device integration remains a large challenge, and the structure-dependent performance of the device has been seldom studied. Here, we report the in situ integration of(More)
Cl-doped n-type CdS NWs with single-crystal wurtzite structure and [Formula: see text] growth direction were synthesized by using CdCl(2) as the dopant via a thermal co-evaporation method. By controlling the Cl vapor pressure during the growth, the conductivity of the CdS:Cl NWs can be tuned in a wide range of five orders of magnitude. A nano-photodetector(More)
SiNW array represents an attractive system for construction of high-performance energy, electronic, and sensor devices. To meet the demand for flexible devices as well as address the concern about the full use of the Si material, large-area transfer of the SiNW array from growth substrate is very desirable. Here, we report a simple air heating approach to(More)
Coaxial ZnSe/Si nanocables were successfully produced by a simple two-step growth method. ZnSe nanowire cores were first synthesized by thermal evaporation and then followed by the chemical vapor deposition (CVD) growth of Si shells. The former have a cubic single-crystal structure with a longitudinal direction of [Formula: see text], while the latter are(More)
Due to their extraordinary properties, single-crystalline organic nanowires (NWs) are important building blocks for future low-cost and efficient nano-optoelectronic devices. However, it remains a critical challenge to assemble organic NWs rationally in an orientation-, dimensionality- and location-controlled manner. Herein, we demonstrate a feasible method(More)
A broadband, polarization-independent, and wide-angle refractory metal metamaterial absorber is numerically investigated at terahertz frequencies, which consists of a periodic array of a chromium metallic loop and a chromium metallic film separated by a polyimide layer. Results show that a higher than 90% broadband absorption can be achieved for the range(More)
Single-crystal organic nanostructures show promising applications in flexible and stretchable electronics, while their applications are impeded by the large incompatibility with the well-developed photolithography techniques. Here we report a novel two-step transfer printing (TTP) method for the construction of organic nanowires (NWs) based devices onto(More)
  • 1