Learn More
In this work, a novel and facile route was developed for the immobilization of enzyme on nanosized magnetic particles, and its application to fast protein digestion via a direct MALDI-TOF mass spectrometry analysis was demonstrated. At first, amine-functionalized magnetic particles with high magnetic responsivity and excellent dispersibility were prepared(More)
Fe3O4@ZrO2 microspheres with well-defined core-shell structure were prepared and applied for the highly selective enrichment of phosphopeptides from tryptic digest product of proteins. To successfully coat iron oxide microspheres with uniform zirconia shell, magnetic Fe3O4 microspheres were first synthesized via a solvothermal reaction, followed by being(More)
An easily replaceable enzymatic microreactor has been fabricated based on the glass microchip with trypsin-immobilized magnetic silica microspheres (MS microspheres). Magnetic microspheres with small size (approximately 300 nm in diameter) and high magnetic responsivity to magnetic field (68.2 emu/g) were synthesized and modified with tetraethyl(More)
An easily replaceable and regenerable protease microreactor with metal-ion chelated adsorption of enzyme has been fabricated on chip. Magnetic microspheres with small size (approximately 200 nm in diameter) and strong magnetism were synthesized and were modified with tetraethyl orthosilicate. The metal chelating agent of iminodiacetic acid was then reacted(More)
Due to the dynamic nature and low stoichiometry of protein phosphorylation, enrichment of phosphorylated peptides from proteolytic mixtures is often necessary prior to their characterization by mass spectrometry. Immobilized metal affinity chromatography (IMAC) is a popular way to enrich phosphopeptides; however, conventional IMAC lacks enough specificity(More)
In this study, novel C8-functionalized magnetic polymer microspheres were prepared by coating single submicron-sized magnetite particle with silica and subsequent modification with chloro (dimethyl) octylsilane. The resulting C8-functionalized magnetic silica (C8-f-M-S) microspheres exhibit well-defined magnetite-core-silica-shell structure and possess high(More)
A novel approach is proposed to synthesize Fe(3)O(4)@TiO(2) microspheres with a well-defined core-shell structure, and the synthesized Fe(3)O(4)@TiO(2) core-shell microspheres were successfully applied for the simple and fast enrichment of phosphopeptides via direct MALDI-TOF mass spectrometry analysis.
The current "shotgun" proteomic analysis, strong cation exchange-RPLC-MS/MS system, is a widely used method for proteome research. Currently, it is not suitable for complicated protein sample analysis, like mammal tissues or cells. To increase the protein identification confidence and number, an additional separation dimension for sample fractionation is(More)
The analysis of whole cell or tissue extracts is too complex for current protein identification technology and not suitable for the study of proteins with low copy levels. To concentrate and enrich low abundance proteins, organelle proteomics is a promising strategy. This approach can not only reduce the protein sample complexity but also provide(More)
  • 1