Learn More
Vascular endothelial growth factor (VEGF)-A165b is a COOH-terminal splice variant of VEGF-A that has been implicated in negative regulation of angiogenesis. We compared the properties of VEGF-A165b with those of VEGF-A121, VEGF-A145, and VEGF-A165. Induction of tyrosine phosphorylation sites in VEGFR-2 differed between the VEGF ligands as determined by(More)
Vascular endothelial growth factor (VEGF)-A regulates vascular development and angiogenesis. VEGF isoforms differ in ability to bind coreceptors heparan sulfate (HS) and neuropilin-1 (NRP1). We used VEGF-A165 (which binds HS and NRP1), VEGF-A121 (binds neither HS nor NRP1), and parapoxvirus VEGF-E-NZ2 (binds NRP1 but not HS) to investigate the role of NRP1(More)
Regulation of vascular endothelial (VE) growth factor (VEGF)-induced permeability is critical in physiological and pathological processes. We show that tyrosine phosphorylation of VEGF receptor 2 (VEGFR2) at Y951 facilitates binding of VEGFR2 to the Rous sarcoma (Src) homology 2-domain of T cell-specific adaptor (TSAd), which in turn regulates VEGF-induced(More)
The specific role of VEGFA-induced permeability and vascular leakage in physiology and pathology has remained unclear. Here we show that VEGFA-induced vascular leakage depends on signalling initiated via the VEGFR2 phosphosite Y949, regulating dynamic c-Src and VE-cadherin phosphorylation. Abolished Y949 signalling in the mouse mutant Vegfr2(Y949F/Y949F)(More)
Polarization of tumor-associated macrophages (TAMs) to a proangiogenic/immune-suppressive (M2-like) phenotype and abnormal, hypoperfused vessels are hallmarks of malignancy, but their molecular basis and interrelationship remains enigmatic. We report that the host-produced histidine-rich glycoprotein (HRG) inhibits tumor growth and metastasis, while(More)
Vascular endothelial growth factors (VEGFs) interact with the receptor tyrosine kinases (RTKs) VEGFR-1, -2, and -3; neuropilins (NRPs); and heparan sulfate (HS) proteoglycans. VEGF RTKs signal to downstream targets upon ligand-induced tyrosine phosphorylation, while NRPs and HS act as coreceptors that lack enzymatic activity yet modulate signal output by(More)
The vascular endothelial growth factors VEGFA and VEGFC are crucial regulators of vascular development. They exert their effects by dimerization and activation of the cognate receptors VEGFR2 and VEGFR3. Here, we have used in situ proximity ligation to detect receptor complexes in intact endothelial cells. We show that both VEGFA and VEGFC potently induce(More)
Vascular endothelial growth factor (VEGF) guides the path of new vessel sprouts by inducing VEGF receptor-2 activity in the sprout tip. In the stalk cells of the sprout, VEGF receptor-2 activity is downregulated. Here, we show that VEGF receptor-2 in stalk cells is dephosphorylated by the endothelium-specific vascular endothelial-phosphotyrosine phosphatase(More)
BACKGROUND Porphyrin derivatives have been widely used in photodynamic therapy as effective sensitizers. Protoporphyrin IX (PpIX), a well-known hematoporphyrin derivative component, shows great potential to enhance light induced tumor cell damage. However, PpIX alone could also exert anti-tumor effects. The mechanisms underlying those direct effects are(More)
Vascular endothelial growth factor (VEGF)-A165b is a COOH-terminal splice variant of VEGF-A that has been implicated in negative regulation of angiogenesis. We compared the properties of VEGF-A165b with those of VEGF-A121, VEGF-A145, and VEGF-A165. Induction of tyrosine phosphoryla-tion sites in VEGFR-2 differed between the VEGF ligands as determined by(More)
  • 1