• Citations Per Year
Learn More
BACKGROUND Intranasal olfactory drug delivery provides a non-invasive method that bypasses the Blood-Brain-Barrier and directly delivers medication to the brain and spinal cord. However, a device designed specifically for olfactory delivery has not yet been found. METHODS In this study, a new delivery method was proposed that utilized electrophoretic(More)
Direct nose-to-brain drug delivery has multiple advantages over conventional intravenous deliveries. However, demonstration of its clinical feasibility is still in adolescence due to the lack of devices that effectively deliver medications to olfactory epitheliums. The objective of this study is to numerically evaluate two olfactory delivery protocols in a(More)
Electrostatic charging occurs in most aerosol generation processes and can significantly influence subsequent particle deposition rates and patterns in the respiratory tract through the image and space forces. The behavior of inhaled aerosols with charge is expected to be most affected in the upper airways, where particles come in close proximity to the(More)
BACKGROUND The human respiratory airway undergoes dramatic growth during infancy and childhood, which induces substantial variability in air flow pattern and particle deposition. However, deposition studies have typically focused on adult subjects, the results of which cannot be readily extrapolated to children. We developed models to quantify the growth of(More)
BACKGROUND Although direct nose-to-brain drug delivery has multiple advantages, its application is limited by the extremely low delivery efficiency (<1%) to the olfactory region where drugs can enter the brain. It is crucial to developing new methods that can deliver drug particles more effectively to the olfactory region. MATERIALS AND METHODS We(More)
Hygroscopic growth within the human respiratory tract can be significant, which may notably alter the behavior and fate of the inhaled aerosols. The objective of this study is to evaluate the hygroscopic effects upon the transport and deposition of nasally inhaled fine-regime aerosols in children. A physiologically realistic nasal-laryngeal airway model was(More)
CONTEXT How the facial interface affects particle inhalability and depositions within the airway is not well understood. Previous studies of inhalation dosimetry are limited to either inhalability or deposition, rather than the two studied in a systematic way. OBJECTIVE To systematically evaluate the effects of the facial interface on aerosol(More)
The deposition of hygroscopic aerosols is highly complex in nature, which results from a cumulative effect of dynamic particle growth and the real-time size-specific deposition mechanisms. The objective of this study is to evaluate hygroscopic effects on the particle growth, transport, and deposition of nasally inhaled aerosols across a range of 0.2-2.5 μm(More)
BACKGROUND Exhaled aerosol patterns, also called aerosol fingerprints, provide clues to the health of the lung and can be used to detect disease-modified airway structures. The key is how to decode the exhaled aerosol fingerprints and retrieve the lung structural information for a non-invasive identification of respiratory diseases. OBJECTIVE AND METHODS(More)
The objective of this study was to systematically assess the effects of pharyngeal anatomical details on breathing resistance and acoustic characteristics by means of computational modeling. A physiologically realistic nose-throat airway was reconstructed from medical images. Individual airway anatomy such as the uvula, pharynx, and larynx was then isolated(More)