Xiucong Yang

Learn More
PURPOSE The purpose of this work was to demonstrate the advantages of a folate modified pH sensitive micelle system (HPPF) on reducing the systemic toxicity of antitumor drug doxorubicin (DOX) as well as increasing the antitumor efficacy on multi-drug resistant tumor. METHODS The micelle HPPF was fabricated by PHIS-PEG and Fol-PEG-PLA using dialysis(More)
INTRODUCTION P-glycoprotein (P-gp) inhibitors are usually used to treat tumors that overexpress P-gps. However, most common types of breast cancers, such as Luminal A, are low-P-gp expressing, at least during the initial phases of treatment. Therefore, it would be interesting to know if P-gp inhibitors are still useful in treating low-P-gp-expressing(More)
UNLABELLED Though combination chemotherapy or antitumor nanomedicine is extensively investigated, their combining remains in infancy. Additionally, enhanced delivery of estrogen or its analogs to tumor with highly-expressed estrogen-receptor (ER) is seldom considered, despite its necessity for ER-positive breast cancer treatment. Here, nanomedicine based(More)
In addition to showing the specific interaction between a generalized ligand and its receptor and the electrostatic effect between positive cell-penetrating peptides and negative cell membranes, our last study demonstrated the hydrophobic interactivity between a hydrophobic binding peptide (HBP) and biomembranes to be favorable in drug delivery. To yield(More)
Cell-penetrating peptides (CPPs) are increasingly important in transporting macromolecules across cell membranes, but their use remains confined to narrow clinical applications due to the systemic toxicity induced by their positive charges. Several newly discovered electronic neutral penetrating peptides are not attracting much attention because their(More)
  • 1