Learn More
By the main component analysis, and maximum Lyapunov index method, this paper analyses chaotic character of ground water level time series. On this basis, combining the reconstruction phase space of chaos theory with BP neural network to set up a BP neural network model based on chaos theory. This paper forecasts ground water level of the Heihu Spring in(More)
By the analyze of chaos for runoff series, combing the reconstruction phase space theory and BP neural network to develop the BP neural network model based reconstruction phase space, and forecast the runoff series mensal in Xiaoqing river hydrological station of Jinan, the result shows that the model has a very good forecast accuracy and value.
This Letter presents a multi-layer perceptron neural network (MLP-NN) based algorithm to quantitatively determine precipitable water vapour (PWV) directly from near infrared (NIR) radiance measured by the Moderate Resolution Imaging Spectroradiometer (MODIS). First, the background of the MLP-NN based algorithm is discussed briefly. Then, the radiance of(More)
  • 1