Xiong-Yan Chen

Learn More
Callose is a polysaccharide in the form of beta-1,3-glucan with some beta-1,6-branches and it exists in the cell walls of a wide variety of higher plants. Callose plays important roles during a variety of processes in plant development and/or in response to multiple biotic and abiotic stresses. It is now generally believed that callose is produced by(More)
In the present work, we present a proteomic analysis of weakly bound cell wall proteins (CWPs) in rice. CWPs from rice calli were extracted with mannitol/CaCl(2), followed by back extraction with water-saturated phenol. The isolated CWPs were evaluated for contamination by cytosolic proteins by measuring the enzymatic activity of an intracellular marker(More)
Cytokinesis is the division of the cytoplasm and its separation into two daughter cells. Cell plate growth and cytokinesis appear to require callose, but direct functional evidence is still lacking. To determine the role of callose and its synthesis during cytokinesis, we identified and characterized mutants in many members of the GLUCAN SYNTHASE-LIKE (GSL;(More)
Callose or beta-1,3-glucan performs multiple functions during male and female gametophyte development. Callose is synthesized by 12 members of the glucan synthase-like (GSL) gene family in Arabidopsis thaliana. To elucidate the biological roles of Arabidopsis GSL family members during sexual development, we initiated a reverse genetic approach with T-DNA(More)
In plants, plasmodesmata (PD) are intercellular channels that function in both metabolite exchange and the transport of proteins and RNAs. Currently, many of the PD structural and regulatory components remain to be elucidated. Receptor-like kinases (RLKs) belonging to a notably expanded protein family in plants compared to the animal kingdom have been shown(More)
Commercially, lettuce (Lactuca sativa) is one of the most important leafy vegetables. Lettuce produces a milky latex of variable chemical compositions within its laticifers. As a step toward understanding the main physiological roles of this latex in higher plants, we embarked on its proteomic analysis. We investigated 587 latex proteins that were(More)
In the postgenomic era, accurate prediction tools are essential for identification of the proteomes of cell organelles. Prediction methods have been developed for peroxisome-targeted proteins in animals and fungi but are missing specifically for plants. For development of a predictor for plant proteins carrying peroxisome targeting signals type 1 (PTS1), we(More)
Lettuce is an economically important leafy vegetable that accumulates a milk-like sap called latex in the laticifer. Previously, we conducted a large-scale lettuce latex proteomic analysis. However, the identified proteins were obtained only from lettuce ESTs and proteins deposited in NCBI databases. To extend the number of known latex proteins, we carried(More)
The phloem is the major transport route for both small substances and large molecules, such as proteins and RNAs, from their sources to sink tissues. To investigate the proteins present in pumpkin phloem sap, proteome analysis using multidimensional protein identification technology was carried out. Pumpkin phloem peptides obtained by liquid(More)
  • 1