Learn More
Locomotion requires coordinated motor activity throughout an animal's body. In both vertebrates and invertebrates, chains of coupled central pattern generators (CPGs) are commonly evoked to explain local rhythmic behaviors. In C. elegans, we report that proprioception within the motor circuit is responsible for propagating and coordinating rhythmic(More)
Epistatic interactions of multiple single nucleotide polymorphisms (SNPs) are now believed to affect individual susceptibility to common diseases. The detection of such interactions, however, is a challenging task in large scale association studies. Ant colony optimization (ACO) algorithms have been shown to be useful in detecting epistatic interactions.(More)
Applications in micro and nanotechnologies require millimeter-sized devices that are capable of 3-axis positioning with motion ranges of micrometers and resolutions of nanometers. This paper reports on the design, fabrication, and testing of a MEMS-based 3-axis positioning stage. In-plane and out-of-plane electrostatic actuators (comb-drive and(More)
The combination of simple Electrochemical Micro-Paper-based Analytical Devices (EµPADs) with commercially available glucometers allows rapid, quantitative electrochemical analysis of a number of compounds relevant to human health (e.g., glucose, cholesterol, lactate, and alcohol) in blood or urine.
This paper describes the development of MEMS force sensors constructed using paper as the structural material. The working principle on which these paper-based sensors are based is the piezoresistive effect generated by conductive materials patterned on a paper substrate. The device is inexpensive (∼$0.04 per device for materials), simple to fabricate,(More)
As an important embodiment of biomanipulation, injection of foreign materials (e.g., DNA, RNAi, sperm, protein, and drug compounds) into individual cells has significant implications in genetics, transgenics, assisted reproduction, and drug discovery. This paper presents a microrobotic system for fully automated zebrafish embryo injection, which overcomes(More)
Chemoresistance of ovarian cancer has been previously attributed to the expression and activation of Bcl-2 family proteins. BH3-mimetic molecules possessing potential anticancer activity are able to inhibit antiapoptotic Bcl-2 family proteins. AT101 (R-(-)-gossypol), a natural BH3-mimetic molecule, has shown anti-tumor activity as a single agent and in(More)
This paper presents the first demonstration of force-controlled micrograsping at the microNewton force level. The system manipulates highly deformable biomaterials (hydrogel microcapsules and biological cells) in an aqueous environment using a MEMS-based microgripper with integrated force feedback along two axes. The microgripper integrates an(More)
Cellular force sensing and control techniques are capable of enhancing the dexterity and reliability of microrobotic cell manipulation systems. This paper presents a vision-based cellular force sensing technique using a microfabricated elastic cell holding device and a sub-pixel visual tracking algorithm for resolving forces down to 3.7nN during(More)
Novel virosomal formulations of a synthetic oligosaccharide were prepared and evaluated as vaccine candidates against leishmaniasis. A lipophosphoglycan-related synthetic tetrasaccharide antigen was conjugated to a phospholipid and to the influenza virus coat protein hemagglutinin. These glycan conjugates were embedded into the lipid membrane of(More)