Xinyong Chen

Learn More
Embryonic stem cells (ESC) are both a potential source of cells for tissue replacement therapies and an accessible tool to model early embryonic development. Chemical factors such as soluble growth factors and insoluble components of the extracellular matrix are known to affect the differentiation of murine ESCs. However, there is also evidence to suggest(More)
Embryonic stem cells (ESCs) are pluripotent and have the ability to differentiate into mineralising cells in vitro. The use of pluripotent cells in engineered bone substitutes will benefit from the development of bioactive scaffolds which encourage cell differentiation and tissue development. Extracellular matrix (ECM) may be a suitable candidate for use in(More)
Particulate interactions are dominated by aspects such as surface topography, exposed chemical moieties, environmental conditions, and thermodynamic properties such as surface free energy (γ). The absolute value and relative magnitude of surface energies of a drug and excipients within a formulation can significantly influence manufacture, processing, and(More)
Formation of a solid solution of a drug in a water-soluble polymer is one of the primary techniques used to improve the dissolution rate and thus bioavailability of a poorly water-soluble drug. Understanding and detecting the state of the drug inside such a polymer matrix is critically important since issues such as drug stability, safety and efficacy can(More)
Recent studies have shown that neurodegeneration is closely related to misfolding and aggregation of neuronal tau. Our previous results show that neuronal tau aggregates in formaldehyde solution and that aggregated tau induces apoptosis of SH-SY5Y and hippocampal cells. In the present study, based on atomic force microscopy (AFM) observation, we have found(More)
The core recognition motif of the amyloidogenic beta-amyloid polypeptide, diphenylalanine peptide, has previously been shown to self-assemble into discrete, well-ordered, stiff nanotubes under mild conditions. The nanotubes keep the same morphology from room temperature up to 100 degrees C. In the presented study, we applied the bending beam model to atomic(More)
Self-assembling aromatic dipeptides are among the smallest known biological materials which readily form ordered nanostructures. The simplicity of nanotube formation makes them highly desirable for a range of bionanotechnology applications. Here, we investigate the application of the atomic force microscope as a thermomechanical lithographic tool for the(More)
This study was conducted to accurately measure the dispersive surface free energy of lactose solids in ordered and disordered states. Atomic force microscopy (AFM) was used to determine the contact adhesion force between an AFM tip and lactose under low humidity (ca. 1% RH). The geometry of the tip contacting apex was characterized by scanning a porous(More)
Injectable controlled-release formulations are of increasing interest for the treatment of chronic diseases. This study aims to develop and characterize a polymeric matrix for intramuscular or subcutaneous injection, consisting of two biocompatible polymers, particularly suitable for formulating poorly soluble drugs. For this matrix, the water-insoluble(More)
established crystallization conditions (4). The only polymorphic Ardeshir Danesh,1 Xinyong Chen,1 forms used pharmaceutically are polymorphs A and B. PolyMartyn C. Davies,1 Clive J. Roberts,1,4 morph A is easier to handle, particularly in large scale operations Giles H. W. Sanders,1,3 Saul J. B. Tendler,1 due to good flow properties, and lack of adherence(More)