Xinmei Hou

  • Citations Per Year
Learn More
Fabrication of eletrochemical sensors based on wide bandgap compound semiconductors has attracted increasing interest in recent years. Here we report for the first time electrochemical nitrite sensors based on cubic silicon carbide (SiC) nanowires (NWs) with smooth surface and boron-doped cubic SiC NWs with fin-like structure. Multiple techniques including(More)
B-doped 3C-SiC nanowires have been synthesized via a facile and simple carbothermal reduction method at 1500 °C for 2 h in a flowing purified argon atmosphere. The obtained nanowires possess a single crystalline and finned microstructure with fins about 100-200 nm in diameter and 10-20 nm in thickness. The diameter of the inner core stem is about 80 nm on(More)
Coaxial nanocables (CNs) with an SiC core and a SiO2 shell were fabricated at a large scale by a simple and low cost method. The thickness of the SiO2 shell could be controlled by etching in 1 M NaOH aqueous solution for different amounts of time. XRD, SEM, TEM, HRTEM, PL and UV-Vis spectra were adopted to investigate the morphology and optical properties(More)
Aiming to achieve the synergistic enhancement of the surface-enhanced Raman scattering (SERS) and photoelectrocatalytic (PEC) performance on a noble metal-semiconductor, such as Au nanoparticles (NPs)-TiO2 nanotube arrays (TiO2 NTAs@hybrid Au NPs), theoretical calculation and experiments are performed. Theoretical calculation indicates that both the SERS(More)
In this paper, several methods including HF, NaOH, TEOS, and PVP treatment were adopted to modify the wettability of silicon carbide (SiC) nanowires switching from hydrophobic to hydrophilic. The phase and microstructure investigated by XRD, FT-IR, XPS, TGA, SEM, and TEM demonstrated SiC nanowires switching from hydrophobic to hydrophilic due to the(More)
In this research, we demonstrate a simple route for preparing SiC@SiO2 core-shell nanocables and furthermore obtain SiC@SiO2 nanocables/MnO2 as hybrid electrodes for supercapacitors using various modified methods. The modified procedure consists of mild modifications using sodium hydroxide as well as UV light irradiation and deposition of MnO2. The(More)
Mullite nanowhiskers are prepared by a facile technique at low temperature using mica and AlF3 as raw material. Mica acts as reactant as well as substrate. By controlling the reaction temperature and holding time, the mullite nanowhisker array with uniform morphology is obtained. The nanowhisker array possesses Al-rich single crystalline with an average of(More)
Single crystalline β-SiAlON (z = 1.0) nanowhiskers with uniform morphology were prepared using a reaction sintering method at 1773 K for 6 h under flowing nitrogen atmosphere. The as-synthesized whiskers were well-crystallized with about 100-200 nm in diameter and a few hundred microns in length. According to the thermodynamic calculation, Al(g) and SiO(g)(More)
A titanium nitride nanotube array (TiN NTA) electrode was fabricated through anodic oxidation of titanium and reduction and nitridation of TiO2 NTA. The microstructure of TiN NTA was characterized to be uniform with inner diameters of about 120 nm, a wall thickness of 15-20 nm and an average length of 10 μm. Open-circuit potentials were measured to evaluate(More)
Al4SiC4 powder with high purity was synthesized using the powder mixture of aluminum (Al), silicon (Si), and carbon (C) at 1800 ◦C in argon. Their oxidation behavior and mechanism in a MgO-C-Al4SiC4 system was investigated at 1400–1600 ◦C. XRD, SEM, and energy dispersive spectrometry (EDS) were adopted to analyze the microstructure and phase evolution. The(More)