Learn More
Dimethyl sulfoxide (DMSO) is an FDA-approved organosulfur solvent that is reported to have therapeutic value in osteoarthritis and osteopenia. DMSO is used as a cryoprotectant for the cryopreservation of bone grafts and mesenchymal stem cells which are later used for bone repair. It is also used as a solvent in the preparation of various scaffolds used for(More)
Fullerenes are among the strongest antioxidants and are characterized as "radical sponges." The research on biomedicinal applications of fullerenes has achieved significant progress since the landmark publication by Friedman et al in 1993. Fullerene-biomolecule conjugates have become an important area of research during the past 2 decades. By a thorough(More)
Compelling evidence suggests that reactive oxygen species (ROS) play a pivotal role in disk degeneration. Fullerol nanoparticles prepared in aqueous solution have been demonstrated to have outstanding ability to scavenge ROS. In this report, in vitro and in vivo models were used to study the efficacy of fullerol in preventing disk degeneration. For in vitro(More)
Osteoarthritis is a common and debilitating joint disease that affects up to 30 million Americans, leading to significant disability, reduction in quality of life, and costing the United States tens of billions of dollars annually. Classically, osteoarthritis has been characterized as a degenerative, wear-and-tear disease, but recent research has identified(More)
Adipose-derived stem cells (ADSCs) are an attractive cell source for tissue engineering, and recently a modified aggregate culture of human ADSCs (hADSCs) was established based on preparation of three-dimensional (3D) cell aggregates in growth factor-enriched low serum medium using the hanging droplet method. Growth and differentiation factor 5 (GDF5) plays(More)
Antioxidants were implicated as potential reagents to enhance osteogenesis, and nano-fullerenes have been demonstrated to have a great antioxidative capacity by both in vitro and in vivo experiments. In this study, we assessed the impact of a polyhydroxylated fullerene, fullerol, on the osteogenic differentiation of human adipose-derived stem cells (ADSCs).(More)
In a world where increasing joint arthroplasties are being performed on increasingly younger patients, osteolysis as the leading cause of failure after total joint arthroplasty (TJA) has gained considerable attention. Ultra-high molecular weight polyethylene wear-induced osteolysis is the process by which prosthetic debris mechanically released from the(More)
  • 1