Xinhang Liu

  • Citations Per Year
Learn More
Zinc is an essential nutrient that is important for normal brain development. Zinc deficiency has been linked to aberrant neurological development and functioning. However, the molecular mechanisms underlying Zinc deficiency-induced neurological disorders remain largely elusive. In the present study, we showed that the proliferation of C17.2 neural stem(More)
Manganese (Mn) is a widely distributed trace element that is essential for normal brain function and development. However, chronic exposure to excessive Mn has been known to lead to neuronal loss and manganism, a disease with debilitating motor and cognitive deficits, whose clinical syndrome resembling idiopathic Parkinson's disease (IPD). However, the(More)
Zinc plays an important role in the development and maintenance of central neural system. Zinc deficiency has been known to alter normal brain function, whose molecular mechanism remains largely elusive. In the present study, we established a zinc deficiency-exposed rat model, and, using western blot and immunohistochemical analyses, found that the(More)
Perfluorooctane sulfonate (PFOS), a ubiquitous pollutant widely found in the environment and biota, can cause numerous adverse effects on human health. In recent years, PFOS's toxic effects on the central nervous system (CNS) have been shown. However, we still have a lot to study in the underlying molecular mechanism of PFOS's neurotoxicity. Microglia, the(More)
Perfluorooctane sulfonate (PFOS), an emerging persistent contaminant that is commonly encountered during daily life, has been shown to exert toxic effects on the central nervous system (CNS). However, the molecular mechanisms underlying the neurotoxicity of PFOS remain largely unknown. It has been widely acknowledged that the inflammatory mediators released(More)
  • 1