Learn More
The salt tolerance of rice (Oryza sativa) correlates with the ability to exclude Na+ from the shoot and to maintain a low cellular Na+/K+ ratio. We have identified a rice plasma membrane Na+/H+ exchanger that, on the basis of genetic and biochemical criteria, is the functional homolog of the Arabidopsis (Arabidopsis thaliana) salt overly sensitive 1 (SOS1)(More)
The contribution of SOS1 (for Salt Overly Sensitive 1), encoding a sodium/proton antiporter, to plant salinity tolerance was analyzed in wild-type and RNA interference (RNAi) lines of the halophytic Arabidopsis (Arabidopsis thaliana)-relative Thellungiella salsuginea. Under all conditions, SOS1 mRNA abundance was higher in Thellungiella than in Arabidopsis.(More)
The plasma membrane sodium/proton exchanger Salt-Overly-Sensitive 1 (SOS1) is a critical salt tolerance determinant in plants. The SOS2-SOS3 calcium-dependent protein kinase complex up-regulates SOS1 activity, but the mechanistic details of this crucial event remain unresolved. Here we show that SOS1 is maintained in a resting state by a C-terminal(More)
Potassium (K(+)) is a major osmoticum of plant cells, and the vacuolar accumulation of this element is a especially crucial feature for plants under high-salt conditions. Emerging evidence indicates that cation/proton transporters of the NHX family are instrumental in the H(+)-linked K(+) transport that mediate active K(+) uptake at the tonoplast for the(More)
Little is known about the influence of substrate-bound gradients on neuronal development, since it has been difficult to fabricate gradients over the distances typically required for biological studies (a few hundred micrometers). This article demonstrates a generally applicable technique for the fabrication of substrate-bound gradients of proteins with(More)
This report shows that the direction of polarization of attached mammalian cells determines the direction in which they move. Surfaces micropatterned with appropriately functionalized self-assembled monolayers constrain individual cells to asymmetric geometries (for example, a teardrop); these geometries polarize the morphology of the cell. After(More)
The functional analysis of the sodium exchanger SOS1 from wheat, TaSOS1, was undertaken using Saccharomyces cerevisiae as a heterologous expression system. The TaSOS1 protein, with significant sequence homology to SOS1 sodium exchangers from Arabidopsis and rice, is abundant in roots and leaves, and is induced by salt treatment. TaSOS1 suppressed the salt(More)
Mammalian cells redirect their movement in response to changes in the physical properties of their extracellular matrix (ECM) adhesive scaffolds, including changes in available substrate area, shape, or flexibility. Yet, little is known about the cell's ability to discriminate between different types of spatial signals. Here we utilize a(More)
Mutants of the plant cation/H(+) antiporter AtNHX1 that confer greater halotolerance were generated by random mutagenesis and selected in yeast by phenotypic complementation. The amino acid substitutions that were selected were conservative and occurred in the second half of the membrane-associated N terminus. AtNHX1 complemented the lack of endogenous(More)
This work examines the molecular mechanism of action of a class of bactericidal gold nanoparticles (NPs) which show potent antibacterial activities against multidrug-resistant Gram-negative bacteria by transcriptomic and proteomic approaches. Gold NPs exert their antibacterial activities mainly by two ways: one is to collapse membrane potential, inhibiting(More)