Xingliang Xu

Learn More
Demand of all living organisms on the same nutrients forms the basis for interspecific competition between plants and microorganisms in soils. This competition is especially strong in the rhizosphere. To evaluate competitive and mutualistic interactions between plants and microorganisms and to analyse ecological consequences of these interactions, we(More)
Though the potential of plants to take up organic N (e.g., amino acids) is well established, the true significance of organic N acquisition to plant N nutrition has not yet been quantified under field conditions. Here we demonstrate that organic N contributes significantly to the annual N uptake of three dominant plant species (Kobresia humilis, Saussurea(More)
Effects of light on the short term competition for organic and inorganic nitrogen between maize and rhizosphere microorganisms were investigated using a mixture of amino acid, ammonium and nitrate under controlled conditions. The amount and forms of N added in the three treatments was identical, but only one of the three N forms was labeled with 15N.(More)
15N-labelled glycine experiments were carried out in both a Kobresia pygmaea meadow and a Kobresia humilis meadow to investigate whether alpine plants can take up organic nitrogen directly from the soil and whether different plant species differ in this respect. Eight plant species were selected in the two meadows, five in the Kobresia humilis meadow and(More)
Nitrous oxide (N2O) emission was measured in a Kobresia humilis meadow and a Potentilla fruticosa meadow in the Qinghai–Tibet Plateau from June 2003 to July 2006. Five treatments were setup in the two alpine meadows. Two bare soil treatments were setup in the K. humilis meadow (BSK) and in the P. fruticosa meadow (BSP) by removing the above- and belowground(More)
Symbiotic nitrogen (N) fixation by legumes was investigated using the 15N dilution technique in two Chinese grasslands: one in the north-eastern Tibetan Plateau and the other in Inner Mongolia in China. A small amount (0.03 g N m−2) of 15N labelled (NH4)2SO4 fertilizer was evenly distributed in two soils. One month after the 15N addition, four legumes(More)
Increase of belowground C allocation by plants under global warming or elevated CO2 may promote decomposition of soil organic carbon (SOC) by priming and strongly affects SOC dynamics. The specific effects by priming of SOC depend on the amount and frequency of C inputs. Most previous priming studies have investigated single C additions, but they are not(More)
For the first time to our knowledge, we report here methane emissions by plant communities in alpine ecosystems in the Qinghai-Tibet Plateau. This has been achieved through long-term field observations from June 2003 to July 2006 using a closed chamber technique. Strong methane emission at the rate of 26.2+/-1.2 and 7.8+/-1.1microg CH4 m-2h-1 was observed(More)
Sources of competition for limited soil resources, such as nitrogen, include competitive interactions among different plant species and between plants and soil microbes. We hypothesized that plant interactions intensified plant competition for inorganic nitrogen with soil microorganisms. To test these competitive interactions, one dominant species (Kobresia(More)
Niche partitioning by time, space and chemical forms has been suggested as an important mechanism to maintain species coexistence. Climate warming is assumed to increase soil nutrient availability through enhancing mineralization of soil organic matter in a variety of terrestrial ecosystems. However, few studies have yet examined how dominant plant species(More)