Learn More
Core-shell Fe(3)O(4)@NaLuF(4):Yb,Er/Tm nanostructure (MUCNP) with multifunctional properties has been developed using a step-wise synthetic method. The successful fabrication of MUCNP has been confirmed by transmission electron microscopy, powder X-ray diffraction, energy-dispersive X-ray analysis and X-ray photoelectron spectroscopy. The MUCNP exhibits(More)
Applications of lanthanide-based nanoparticles for bioimaging have attracted increasing attention. Herein, small size PEG-EuOF:(153)Sm nanocrystals (∼5 nm) (PEG = poly(ethylene glycol)bis(carboxymethyl)ether) combined with the radioactive and X-ray absorption properties were synthesized. The distribution of the PEG-EuOF nanocrystals in living animals was(More)
Molecular imaging modalities provide a wealth of information that is highly complementary and rarely redundant. To combine the advantages of molecular imaging techniques, (18)F-labeled Gd(3+)/Yb(3+)/Er(3+) co-doped NaYF(4) nanophosphors (NPs) simultaneously possessing with radioactivity, magnetic, and upconversion luminescent properties have been fabricated(More)
Multimodal imaging is rapidly becoming an important tool for biomedical applications because it can compensate for the deficiencies of individual imaging modalities. Herein, multifunctional NaLuF(4)-based upconversion nanoparticles (Lu-UCNPs) were synthesized though a facile one-step microemulsion method under ambient condition. The doping of lanthanide(More)
Multimodality imaging overcomes the shortage and incorporates the advantages of different imaging tools. Lanthanide-based nanoprobes are unique and have rich optical, magnetic, radioactive, and X-ray attenuation properties; however, simple doping of different lanthanide cations into one host can result in a material with multifunction but not the optimized(More)
Owing to the convenience and minimal invasiveness, phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is emerging as a powerful technique for cancer treatment. To date, however, few examples of combination PDT and PTT have been reported. Phthalocyanine (Pc) is a class of traditional photosensitizer for PDT, but its(More)
Developing a biocompatible and efficient photothermal coupling agent with appropriate size is a prerequisite for the development of near-infrared (NIR) light-induced photothermal therapy (PTT). In the present study, polyaniline nanoparticles (PANPs) with a size of 48.5 ± 1.5 nm were fabricated and exhibited excellent dispersibility in water by a(More)
Photothermal therapy (PTT) at present, following the temperature definition for conventional thermal therapy, usually keeps the temperature of lesions at 42-45 °C or even higher. Such high temperature kills cancer cells but also increases the damage of normal tissues near lesions through heat conduction and thus brings about more side effects and inhibits(More)
Excessive or misplaced production of ClO(-) in living systems is usually associated with many human diseases. Therefore, it is of great importance to develop an effective and sensitive method to detect ClO(-) in living systems. Herein, we designed an 808 nm excited upconversion luminescence nanosystem, composed of the Nd(3+)-sensitized core-shell(More)
Hormone replacement therapy (HRT) plays an important role in the treatment and prevention of osteoporosis. Here, 17β-estradiol (E2)-loaded PEGlyated upconversion nanoparticles (E2-UCNP@pPEG) were synthesized that retained E2 bioactivity and improved delivery efficiency over a relatively long time-period. E2-UCNP@pPEG was synthesized and characterized using(More)