Xingfeng Wang

Learn More
We report a new electrochemical capacitor with an aqueous KI-KOH electrolyte that exhibits a higher specific energy and power than the state-of-the-art nonaqueous electrochemical capacitors. In addition to electrical double layer capacitance, redox reactions in this device contribute to charge storage at both positive and negative electrodes via a catholyte(More)
Magnesiothermic reduction can directly convert SiO2 into Si nanostructures. Despite intense efforts, efficient fabrication of highly nanoporous silicon by Mg still remains a significant challenge due to the exothermic reaction nature. By employing table salt (NaCl) as a heat scavenger for the magnesiothermic reduction, we demonstrate an effective route to(More)
A novel ambient hydrolysis deposition (AHD) methodology that employs sequential water adsorption followed by a hydrolysis reaction to infiltrate SnO2 nanoparticles into the nanopores of mesoporous carbon in a conformal and controllable manner is introduced. The empty space in the SnO2/C composites can be adjusted by varying the number of AHD cycles. An(More)
For the first time, we demonstrate that orthorhombic V2O5 can exhibit superior electrochemical performance in sodium ion batteries when uniformly coated inside nanoporous carbon. The encapsulated V2O5 shows a specific capacity as high as 276 mAh/g, while the whole nanocomposite exhibits a capacity of 170 mAh/g. The V2O5/C composite was fabricated by a novel(More)
We have, for the first time, employed a magnesiothermic reaction to convert microwave-irradiated graphite oxide to pure graphene. The magnesiothermic reaction increases the carbon to oxygen atomic ratio from 22.2 to 165.7 and maintains a high surface area. The new strategy demonstrates an efficient method for obtaining highly pure graphene materials.
Research in electric double-layer capacitors (EDLCs) and rechargeable batteries is converging to target systems that have battery-level energy density and capacitor-level cycling stability and power density. This research direction has been facilitated by the use of redox-active electrolytes that add faradaic charge storage to increase energy density of the(More)
We report that crystalline 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), an organic solid, is highly amenable to host divalent metal ions, i.e., Mg2+ and Ca2+, in aqueous electrolytes, where the van der Waals structure is intrinsically superior in hosting charge-dense ions. We observe that the divalent nature of Mg2+ causes unique squeezing(More)
Electrochemical double-layer capacitors exhibit high power and long cycle life but have low specific energy compared with batteries, limiting applications. Redox-enhanced capacitors increase specific energy by using redox-active electrolytes that are oxidized at the positive electrode and reduced at the negative electrode during charging. Here we report(More)
The performance of redox-enhanced electrochemical capacitors (redox ECs) is substantially improved when oxidized catholyte (bromide) and reduced anolyte (viologen) are retained within the porous electrodes through reversible counterion-induced solid complexation. Investigation of the mechanism illustrates design principles and identifies pentyl(More)
The rate capability of hard carbon has long been underestimated in prior studies that used carbon/Na two-electrode half-cells. Through a three-electrode cell setup, we discover that it is the overpotential of the sodium counter electrode that drives the half-cells to the lower cutoff potential prematurely during hard carbon sodiation, particularly at high(More)